SISTEM HITUNG DAN INSPEKSI KUALITAS BUAH JERUK LOKAL MENGGUNAKAN KOMBINASI ALGORITMA YOLOv9-C DENGAN VGG-16 COMPUTER VISION

FATAHNA, INNA (2025) SISTEM HITUNG DAN INSPEKSI KUALITAS BUAH JERUK LOKAL MENGGUNAKAN KOMBINASI ALGORITMA YOLOv9-C DENGAN VGG-16 COMPUTER VISION. Undergraduate thesis, Universitas Nusantara PGRI Kediri.

This is the latest version of this item.

[img] Text (Full Text)
RAMA_55201_2113020181.pdf - Accepted Version
Restricted to Registered users only
Available under License Creative Commons Public Domain Dedication.

Download (7MB)
[img] Text (Similarity)
RAMA_55201_2113020181_SIMILARITY.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (964kB)
[img] Text (Cover sd BAB 1 + References)
RAMA_55201_2113020181_0708028704_0720117501_01_front_ref.pdf - Accepted Version
Available under License Creative Commons Public Domain Dedication.

Download (1MB)
[img] Text (BAB 2)
RAMA_55201_2113020181_0708028704_0720117501_02.pdf - Accepted Version
Restricted to Registered users only
Available under License Creative Commons Public Domain Dedication.

Download (726kB)
[img] Text (BAB 3)
RAMA_55201_2113020181_0708028704_0720117501_03.pdf - Accepted Version
Restricted to Registered users only
Available under License Creative Commons Public Domain Dedication.

Download (713kB)
[img] Text (BAB 4)
RAMA_55201_2113020181_0708028704_0720117501_04.pdf - Accepted Version
Restricted to Registered users only
Available under License Creative Commons Public Domain Dedication.

Download (2MB)
[img] Text (BAB 5)
RAMA_55201_2113020181_0708028704_0720117501_05.pdf - Accepted Version
Restricted to Registered users only
Available under License Creative Commons Public Domain Dedication.

Download (227kB)
[img] Text (References)
RAMA_55201_21130202181_0708028704_0720117501_06_ref.pdf - Bibliography
Available under License Creative Commons Public Domain Dedication.

Download (196kB)
[img] Text (Lampiran)
RAMA_55201_2113020181_0708028704_0720117501_07_lamp.pdf - Accepted Version
Restricted to Registered users only
Available under License Creative Commons Public Domain Dedication.

Download (3MB)

Abstract

Jeruk sebagai sumber vitamin C yang penting bagi tubuh perlu dikembangkan varietas lokalnya melalui penerapan teknologi computer vision. Penelitian ini mengusulkan kombinasi algoritma YOLOv9C dan VGG-16 untuk meningkatkan akurasi klasifikasi kualitas jeruk lokal, guna mengatasi ketidakefisienan akibat subjektivitas pengamatan manusia. Model hibrida yang dirancang berhasil mencapai akurasi 97%, lebih tinggi dibandingkan penggunaan YOLOv9C (74%) dan VGG-16 (59%) secara terpisah, menggunakan dataset sebanyak 2.221 gambar dengan pembagian data pelatihan, pengujian, dan validasi. VGG-16 dimanfaatkan untuk ekstraksi fitur dan penyetelan lanjutan, sementara YOLOv9C digunakan pada tahap klasifikasi. Studi ini terbatas pada dua kategori (segar dan busuk) dalam kondisi ciri visual pencahayaan yang professional dengan mengimplementasikan sistem berbasis website maupun mobile application, diberikan akses kamera maupun perangkat lokal untuk proses inspection quality dan counting.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Computer Vision, Jeruk Lokal, Kasifikasi Citra, VGG-16, YOLOv9C
Subjects: 140 Plant science > 161 Agricultural industrial technology (and agrotechnology)
140 Plant science > 165 Food and nutrition technology
140 Plant science > 186 Agricultural extension worker
410 Engineering science > 457 Computer engineering
410 Engineering science > 458 Technical information
410 Engineering science > 459 Computer science
410 Engineering science > 461 Information systems
410 Engineering science > 462 Information technology
410 Engineering science > 463 Software engineering
710 Education science > 786 Informatics engineering
Divisions: Fakultas Teknik dan Ilmu Komputer > S1-Teknik Informatika
Depositing User: Inna Fatahna
Last Modified: 06 Aug 2025 15:35
URI: http://repository.unpkediri.ac.id/id/eprint/19981

Available Versions of this Item

Actions (login required)

View Item View Item