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Abstract. The problems of flood wave propagation, in bodies of waters, cause by intense rains or breaking of control 

structures, represent a great challenge in the mathematical modeling processes. This research concerns about the 

development and application of a mathematical model based on the Saint Venant’s equations, to study the behavior of the 

propagation of a flood wave in trapezoidal channels. In these equations, the momentum equation transforms to partial 

differential equation which has two parameters related to cross-sectional area and discharge of the channel. These new 

formulas have been solved by using an explicit finite difference scheme. In computation procedure, after computing the 

discharge from the momentum equation, the cross-sectional area will be obtained from the continuity equation for a given 

point of channel. To evaluate the behavior of the control variables, several scenarios for the main channel as well as for 

flood waves are considered and different simulations are performed. The simulations demonstrate that for the same bed 

width, the peak discharge in trapezoidal channel smaller than in rectangular one at a specific distance along the channel 

length and so, that roughness coefficient and bed slope of the channel play a strong game on the behavior of the flood 

wave propagation. 

INTRODUCTION 

The variation of the discharge with time at a point on a stream channel may be determined by consideration of 

similar data from a point upstream. In this process, called flood routing, as the flood moves downstream through 

channel reaches its shape is changed by storage in the reach between any two points. Flood routing helps designers 

in understanding the flood flow characteristics in river flows and its surrounding area and it is important in 

designing the flood protection measures and proposing effective economical solutions to protect against flood wave 

behavior in waterways. 

For flood routing problems, one-dimensional Saint-venant equations describe the flood mechanics. Because of 

difficulties in analytical solution to flood routing in a channel section, various approximations to the Saint-Venant 

equations have been proposed. Stocker proposed his numerical method known as fixed mesh explicit method for 

solving unsteady flow equations [9]. To avoid sensivity of explicit methods to the finite time interval, Fox used 

characteristic lines method proposed by Hartree named also as rectangular grid method [13]. The merit of this 

method is the easy handling of its simulation and computer programming. Preissmann used implicit scheme and Lip-

Frog proposed explicit method from the second stage [5]. Abbott proposed an explicit method, in cooperation with 

researchers at the Delft University of Netherlands [14]. Abbott’s four point method based on characteristic lines 

method ignored the energy line slope and the bed flow slope to slove the unsteady flow equations. The pioneers of 

the dynamic wave method are by Preissmann, Blatzer and Lai, Dronkers, Amien and Fang [2]. The most effective 

effort was done by Amien and Fang for stable, quick, and accurate solution of equations using Newton Raphson 

iterations. However, most of these solutions need a lot of effort and computer time. Therefore, Keskin and 

Agiralioglu proposed a new form of dynamic wave model that related with the cross-sectional shape of the channel, 
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namely rectangular channel and then it was solved by using an explicit finite difference scheme [11]. This new 

model was more easy to formulate and simple to compute than that one. 

In the prediction of flood flows numerically, in addition to governing equations and their numerical scheme, the 

main factor affecting the results of the simulation is the cross-sectional shape of the channel through which the 

flood, because it has effect on the size of the peak discharge in area travesed the flood. Cross-sectional shape of the 

channel on the ground surface both natural and artificial may be represented by a combination four basic geometric 

elements as rectangular, triangular, trapezoidal, and a semi-circular. Based on proposed by Keskin, in this study will 

be investigated the behavior of the propagation of a flood wave in trapezoidal channel. Trapezoidal channel section 

is selected because it is the most widely open channel sections in engineering. Most of the main water conveying 

lines have the trapezoidal geometry. The most important advantage of trapezoidal sections is their easy of 

construction. Beside their constructional advantages, they have also the advantageous of high hydraulic efficiency. 

Therefore, it is not surprising that most of the water carrying and discharging lines have been made of trapezoidal 

geometry. 

Systematic discussion of this research is build momentum equation for trapezoidal channel that obtained from 

Saint-Venat equations. In this formulation, the momentum equation transforms to a partial differential equation 

which has two parameters related to cross-sectional area and discharge of the channel. Hereinafter, the obtained 

momentum equation and the continuity equation are solved by using explicit finite difference scheme in order to 

estimate the flood routing for a trapezoidal channel. In computation procedure, after computing the discharge from 

the momentum equation, the cross-sectional area will be obtained from the continuity equation for a given point of 

the channel. 

In this research will be simulated some cases, including form of outflow at vary positions for entire time, 

comparison between shape of outflow for trapezoidal channel at a distance of 600 meters with form of outflow for 

rectangular channel which is selected from the literature, behavior of the flood wave in different time for all 

positions and the last, simulate how is the influence of the roughness coefficient and bed slope on behavior of the 

wave propagation. 

GOVERNING EQUATION 

The basic equations that describe one-dimensional unsteady flow in open channel, the Saint-Venant equations, 

completely define the flood routing with respect to distance along the channel and time. These equations, called the 

dynamic wave equations, (Cunge et.al., 1980) can be written in the form of continuity equation and a momentum 

equation as follows, respectively 
𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 0                                                                                                                                                                  (1) 

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(
𝑄2

𝐴
) + 𝑔𝐴 (

𝜕ℎ

𝜕𝑥
− 𝑆𝑜) + 𝑔𝐴𝑆𝑓 = 0                                                                                                                   (2) 

where, x is the longitudinal distance along the channel, t is the time, A is the cross-setional area of the flow, Q is the 

discharge, h is the surface level of the water in the channel, So is the slope of bottom of the channel, Sf is the friction 

slope, g is the gravitational acceleration. 

Furthermore, by using Eq. (2) will be formed a new momentum equation which has only two parameters related 

to cross-sectional area and discharge of the channel. For a trapezoidal cross-sectional as shown in figure 1, cross-

sectional area can be written as 

𝐴 = (𝑏 + 𝑧ℎ)ℎ                                                                                                                                                             (3) 

where b is the bottom width of the channel and z is side slopes of the channel. 

 

FIGURE 1. Trapezoidal channel cross-section 
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By assuming the width of channel constant, the following equation can be obtained from Eq. (3) as 
𝜕ℎ

𝜕𝑥
=

1

(𝑏+2𝑧ℎ)

𝜕𝐴

𝜕𝑥
                                                                                                                                                              (4) 

By substituting Eq. (4) into Eq. (2) and rearranging the equation one obtains 
𝜕𝑄

𝜕𝑡
+ 2

𝑄

𝐴

𝜕𝑄

𝜕𝑥
+ (

𝑔𝐴

(𝑏+2𝑧ℎ)
−
𝑄2

𝐴2
)
𝜕𝐴

𝜕𝑥
+ 𝑔𝐴(𝑆𝑓 − 𝑆𝑜) = 0                                                                                                   (5) 

In order to calculate Sf , the Manning formulation will be used. Thus, 

𝑉 =
1

𝑛
 𝑅

2

3 𝑆
𝑓

1

2                                                                                                                                                                  (6) 

where 𝑉 is the mean velocity, 𝑅 is the hydraulic radius, and n is the roughness coefficient. For a trapezoidal channel, 

the following relationships are given by 

𝑅 = 𝐴/𝑃                                                                                                                                                                       (7) 

𝑃 = 𝑏 + 2ℎ√1 + 𝑧2                                                                                                                                                     (8) 

Given the above relations, the following partial derivatives may be listed 
𝜕𝑃

𝜕𝑥
= 2√1 + 𝑧2

𝜕ℎ

𝜕𝑥
                                                                                                                                                         (9) 

𝜕𝑅

𝜕𝑥
=

1

𝑃
(1 −

2√1+𝑧2

(𝑏+2𝑧ℎ)

𝐴

𝑃
)
𝜕𝐴

𝜕𝑥
                                                                                                                                            (10) 

𝜕𝑉

𝜕𝑥
=
2

3

1

𝑛
 𝑅−

1

3 𝑆
𝑓

1

2 𝜕𝑅

𝜕𝑥
+
1

2

1

𝑛
 𝑅

2

3 𝑆
𝑓

−
1

2 𝜕𝑆𝑓

𝜕𝑥
                                                                                                                           (11) 

Since 
𝜕𝑆𝑓

𝜕𝑥
 is very small related to the other terms, the second term in the right side of  Eq. (11) can be neglected. 

Therefore Eq. (11) can be written as 

𝜕𝑉

𝜕𝑥
=
2

3

1

𝑛
 𝑅−

1

3 𝑆
𝑓

1

2 𝜕𝑅

𝜕𝑥
                                                                                                                                                      (12) 

Defining the discharge 𝑄 = 𝑉𝐴, the following partial derivative can be obtained 
𝜕𝑄

𝜕𝑥
= 𝐴

𝜕𝑉

𝜕𝑥
+ 𝑉

𝜕𝐴

𝜕𝑥
                                                                                                                                                         (13) 

By substituting Eqs. (9), (10), and (12) into Eq. (13) and rearranging the equation one obtained 
𝜕𝐴

𝜕𝑥
=

1

𝑉(
5

3
−
4

3
 
𝑅√1+𝑧2

(𝑏+2𝑧ℎ)
)

𝜕𝑄

𝜕𝑥
                                                                                                                                                  (14) 

And then, by substituting Eq. (14) into Eq. (5), Eq. (15) can be obtained as follows 
𝜕𝑄

𝜕𝑡
+ 𝛼

𝜕𝑄

𝜕𝑥
+ 𝛽 = 0                                                                                                                                                      (15) 

where 

𝛼 = (2
𝑄

𝐴
+

𝑔𝑏𝐴
(𝑏+2𝑧ℎ)

− 
𝑄2

𝐴2

𝑄

𝐴
(
5

3
−
4

3
 
𝑅√1+𝑧2

(𝑏+2𝑧ℎ)
)

)                                                                                                                                         (16) 

𝛽 = 𝑔𝐴(𝑆𝑓 − 𝑆𝑜)                                                                                                                                                       (17) 

The friction slope, 𝑆𝑓 can be obtained from the Manning friction formula as 𝑆𝑓 = 𝑄
2𝑛2/ (𝐴2𝑅

4

3) or from Eq. (6). 

The momentum equation has two parameters related to cross-sectional area and discharge of the channel. 

Therefore, Eq. (15) can be solved easily by using a numerical solution subject to initial and boundary conditions. 

Initial condition can be written as, 

𝑄(𝑥, 0) = 𝑄0                                                                                                                                                              (18) 

𝐴(𝑥, 0) = 𝐴0                                                                                                                                                               (19) 

In which 𝐴0 and 𝑄0 are the initial values of cross-sectional area and discharge, respectively, for the given inflow 

hydrograph. The upstream boundary condition can be written as, 

𝑄(0, 𝑡) = 𝑄0 +
(𝑄𝑝−𝑄0)

𝑡𝑝
 𝑡,     for 0 < 𝑡 < 𝑡𝑝                                                                                                               (20) 

𝑄(0, 𝑡) = 𝑄0 −
(𝑄𝑝−𝑄0)

(𝑡𝑏−𝑡𝑝)
 𝑡,     for 𝑡𝑝 < 𝑡 < 𝑡𝑏                                                                                                             (21) 

𝑄(0, 𝑡) = 𝑄0                                                                                                                                                               (22) 

where, 𝑄𝑝 is the peak flow of inflow hydrograph, 𝑡𝑝 is the time to peak flow of inflow hydrograph, 𝑡𝑏 is the base 

time of the inflow hydrograph. 
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NUMERICAL METHOD 

In order to solve the governing equations, an explicit finite difference method is used for numerical solutions. 

Now, let us consider finite difference approximations for a partial derivative. Let us consider a function 𝑓(𝑥, 𝑡). We 

have two independent variables: 𝑥 and 𝑡. We may devide the 𝑥-𝑡 plane into grid. The grid interval along the 𝑥-axis 

is Δ𝑥 and the grid interval along 𝑡-axis is Δ𝑡. We will call the 𝑖Δ𝑥 grid point 𝑖 and the (𝑖 + 1)Δ𝑥 grid point 𝑖 + 1. 

For the time axis, we will use 𝑗 for 𝑗Δ𝑡 grid point and 𝑗 + 1 for (𝑗 + 1)Δ𝑡 grid point. To refer to different variables at 

this grid points, we will use the number of the spatial grid as a subscript and that of the time grid as a superscript. 

We will denote the known time level by superscript 𝑗 and the unknown time level by 𝑗 + 1. 

Any dependent variable, 𝑓(𝑥, 𝑡), and its partial derivatives can be approximated with an explicit finite difference, 

define as backward in space and forward in time, as follows 

𝑓(𝑥, 𝑡) = 𝑓𝑖
𝑗
                                                                                                                                                                (23) 

𝜕𝑓(𝑥,𝑡)

𝜕𝑥
=
𝑓𝑖
𝑗
−𝑓𝑖−1

𝑗

Δ𝑥
                                                                                                                                                           (24) 

𝜕𝑓(𝑥,𝑡)

𝜕𝑡
=
𝑓𝑖
𝑗+1

−𝑓𝑖
𝑗

Δ𝑡
                                                                                                                                                          (25) 

Substitution of  Eqs. (23) – (25) into momentum equation, Eq. (15), and into continuity equation, Eq. (1), one 

obtains 

𝑄𝑖
𝑗+1

= 𝑄𝑖
𝑗
−
Δ𝑡

Δ𝑥
 (𝛼𝑖

𝑗
)(𝑄𝑖

𝑗
− 𝑄𝑖−1

𝑗
) + 𝛽𝑖

𝑗
Δ𝑡                                                                                                               (26) 

𝐴𝑖
𝑗+1

= 𝐴𝑖
𝑗
−
Δ𝑡

Δ𝑥
 (𝑄𝑖

𝑗+1
− 𝑄𝑖−1

𝑗+1
)                                                                                                                                (27) 

Where 

𝛼𝑖
𝑗
=

(

  
 
2 
𝑄𝑖
𝑗

𝐴
𝑖
𝑗 +

𝑔𝑏𝐴
𝑖
𝑗

(𝑏2+2𝑧𝐴
𝑖
𝑗
)
−
(𝑄
𝑖
𝑗
)
2

(𝐴
𝑖
𝑗
)
2

𝑄
𝑖
𝑗

𝐴
𝑖
𝑗(
5

3
−
4

3
 
𝑏𝑅
𝑖
𝑗√1+𝑧2

(𝑏2+2𝑧𝐴
𝑖
𝑗
)
)

)

  
 

                                                                                                                               (28) 

𝛽𝑖
𝑗
= 𝑔𝐴𝑖

𝑗
((𝑆𝑓)𝑖

𝑗
− 𝑆0)                                                                                                                                              (29) 

It can be seen that each pair of 𝛼𝑖
𝑗
 and 𝛽𝑖

𝑗
 values can be readily calculated from Eqs. (28) and (29) using the known 

initial and boundary data at starting point of (𝑖, 𝑗) the one can obtain 𝑄𝑖
𝑗+1

 from Eq. (26). Finally, using 𝑄𝑖
𝑗+1

, 𝐴𝑖
𝑗+1

 

can be calculated from Eq. (27). This technique will be repeated for successive values of (𝑖, 𝑗). 
 

RESULTS 

In this numerical simulation, it was considered the channel with trapezoidal section, with the following 

characteristics: the length of the channel 𝐿 = 2000 𝑚, the bottom width of the channel 𝑏 = 5 𝑚, the bottom slope of 

the channel 𝑆0 = 0.0005, and its Manning’s roughness coefficient 𝑛 = 0.0138. for the triangular inflow 

hydrograph, the hydrograph is selected as 𝑄(𝑥, 𝑡) = 𝑄(0,0) = 𝑄0 = 3 𝑚
3/𝑠, 𝑄(0,10) = 𝑄𝑝 = 12 𝑚

3/𝑠, 

𝑄(0,20) = 𝑄𝑏 = 3 𝑚
3/𝑠. 

For the accuracy of the results, Δ𝑥 should be small and for the achievement of the stability in practice, 
Δ𝑡

Δ𝑥
 should 

be smaller than Courant criteria. The space interval was selected as Δ𝑥 = 100 𝑚 and the time interval was selected 

as Δ𝑡 = 10 𝑠. Larger values of Δ𝑡 have been tested, but they given results which deviated from the expected values.  

The dynamic wave model developed in this work was to accomplish several simulations, for the same initial and 

boundary conditions, in way to evaluate the propagation of the wave along the channel, as follows. 

Behavior of the flow for different time 

The figure 2 represent the behavior of the flow, for different time, showing the wave propagation with the space. 

Through the figure 2 below, it can be observed that the wave has a regular propagation altering the value of the flow 

systematically in the time and in the space. The difference, among the distance and corresponding to the positions of 

two consecutive crests, that is, devide by increment of time, corresponding is the celerity of the wave. 
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FIGURE 2. Wave propagation for different time 

Behavior of the flow for different distance 

In the figure 3 the propagation of the wave can be observed, along the time, for different sections of the channel. 

Through the figure 3, it is noticed that the energy of propagation of the wave vanishes quickly along the time. That 

is caused mainly by the friction factor present in the equation of Saint Venant, and consequently, this result obtained 

in the present simulation is entirely in agreement with the theoretical subject of the model. 

 

 

FIGURE 3. Inflow hydrograph and computed outflow at different distances 
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Comparison outflow in trapezoidal and in rectangular 

In order to compare the simplified dynamic model in a trapezoidal channel with in a rectangular one event is 

selected from literature as used by Keskin. 

 

FIGURE 4. Comparison of outflow hydrograph for trapezoidal channel and rectangular one at distance of 600 m 

 

They used the same inflow hydrograph and selected the distance as 600 m. Figure 4 indicate two computed 

hydrographs, one of them is obtained in trapezoidal channel, the other was found in rectangular one. The maximum 

discharge of trapezoidal channel is 6.67 m3/s and its time is 22 min, whereas for rectangular one found a peak 

discharge of 7.38 m3/s and a time of 19 min. Through the figure 4 above, it can be observed that the arrival of awave 

in a fixed point of the channel, showing that as bigger is the free surface (top) width the smaller will be pick of the 

flood wave. 

Behavior of the wave propagation for different bed slope and roughness 

The figure 5 shows the propagation of the wave for different bed slope, for the section distant 600 meter from the 

origin, in function of the time. This simulation shows the arrival of a wave in fixed point of the channel, showing 

that as bigger is the bed slope the bigger will be the pick of the flood wave. However, the results show that the speed 

of propagation of the wave does not change so much with this parameter. Through the fgure, it is possible to see that 

the time that the pick of wave reaches the section 600 m from the origin, is, approximately, of 22 minuts, for all 

simulation. 

The analysis could be done with respect to the influence of the roughness coefficient on the behavior of the wave 

propagation for section distant 600 meter from origin, as shown in figure 6. This simulation shows the arrival of a 

wave in a fixed point of the channel, showing that as bigger is the roughness cefficient the smaller will be pick of the 

flood wave. 
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FIGURE 5. Behavior of the wave propagation for different bed slope 

 

 

 

FIGURE 6. Behavior of the wave propagation for different roughness 
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For flood routing calculation in trapezoidal channel, a free surface flow model has been developed. The obtained 
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conditions. Finding indicate that as bigger is the free surface (top0 width the smaller will be the pick of the flood 

wave.  

And also with respect to yhe behavior of the flood wave, it was verified that, for different bed slope of the 

channel, the propagation of the wave suffers important influence of this parameter, allowing, so, to conclude that as 

larger the bed slope is, the bigger will be the pick of the flood wave. 

Finally, the results showed that this parameter does not make a great influence on the celerity of the flood wave. 

It was verified that for a same distance of origin, the picks of the wave arrive, approximately, at the same time. 
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