RANCANG BANGUN SISTEM MONITORING KELEMBABAN DAN PEMERATAAN SUHU PANAS PADA MESIN TETAS TELUR AYAM OTOMATIS BERBASIS *IOT* MENGGUNAKAN APLIKASI BLYNK

TUGAS AKHIR

Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Ahli Madya Teknik (A.Md.T) Pada Prodi Teknik Elektronika

Oleh:

AHMAD PURWANTORO NPM: 2223050014

PROGRAM STUDI DIPLOMA III TEKNIK ELEKTRONIKA FAKULTAS TEKNIK DAN ILMU KOMPUTER (FTIK) UNIVERSITAS NUSANTARA PGRI KEDIRI

2025

HALAMAN PERSETUJUAN

Tugas Akhir oleh:

AHMAD PURWANTORO

NPM: 2223050014

Judul:

RANCANG BANGUN SISTEM MONITORING KELEMBABAN DAN PEMERATAAN SUHU PANAS PADA MESIN TETAS TELUR AYAM OTOMATIS BERBASIS *IOT* MENGGUNAKAN APLIKASI *BLYNK*

Telah Disetujui Untuk Diajukan Kepada Panitia Ujian/Sidang Tugas Akhir Prodi Teknik Elektronika

Tanggal: 26 Juni 2025

Pembimbing I

Pembimbing II

Miftakhul Maulidina, S.Pd., M.Si. NIDN.0702108901 M. Dewi Manikta Puspitasari, M.Pd NIDN. 0730128701

HALAMAN PENGESAHAN

Tugas Akhir:

AHMAD PURWANTORO

NPM: 2223050014

Judul:

RANCANG BANGUN SISTEM MONITORING KELEMBABAN DAN PEMERATAAN SUHU PANAS PADA MESIN TETAS TELUR AYAM OTOMATIS BERBASIS *IOT* MENGGUNAKAN APLIKASI *BLYNK*

Telah dipertahankan didepan Panitia Ujian/Sidang Tugas Akhir Prodi Teknik Elektronika FTIK UN PGRI Kediri Pada tanggal: 8 Juli 2025

Dan Dinyatakan telah Memenuhi Persyarat

Panitia Penguji: 1. Ketua : Miftakhul Maulidina, S.Pd., M.Si 2. Penguji 1 : Dr. Risky Aswi Ramadhani, M.Kom 3. Pemguji 2 : M. Dewi Manikta Puspitasari, M.Pd Mengetahui, Dekan FTIK

<u>Dr. Sulistiono, M.Si</u> NIDN. 0007076801

HALAMAN PERNYATAAN

Yang bertanda tangan dibawah ini saya,

Nama : Ahmad Purwantoro

Jenis Kelamin : Laki-laki

Tempat /tgl. Lahir : Nganjuk, 25 Juni 2003

NPM 2223050014

Fak/Jur./Prodi. : FTIK/D3 Teknik Elektronika

Menyatakan dengan sebenarnya, bahwa dalam Tugas Akhir ini tidak terdapat karya yang pernah diajukan untuk memperoleh gelar Ahli Madya Teknik (A.Md.T.) di suatu perguruan tinggi, dan sepanjang pengetahuan saya tidak terdapat karya tulis atau pendapat yang pernah diterbitkan oleh orang lain, kecuali yang secara sengaja dan tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka.

Kediri, 30 Juni 2025

Yang Menyatakan

AHMAD PURWANTORO

NPM.2223050014

MOTTO

"Nasibmu telah ditulis oleh tinta cinta-nya, Kemudian disegel dengan rahmat-nya. Jadi tak perlu takut, percayakanlah dirimu kepada-nya, tetap usaha dan berharaplah ketetapannya," Gams of Jannah.

Kupersembahkan karya tulis ilmiah ini untuk:

Bapak Suwito serta untuk Ibu Musini yang selalu menjadi sumber semangat dan motivasi saya dalam menyelesaikan tugas akhir ini. Untuk Saudara Kasanah Dwi Arrohmah, serta teman-teman satu angkatan yang telah mendengarkan keluh kesah, memberi semangat, membantu, dan mendukung saya untuk menyelesaikan tugas akhir di Pendidikan D-3 Teknik Elektronika Universitas Nusantara PGRI Kediri.

ABSTRAK

AHMAD PURWANTORO Rancang Bangun Sistem Monitoring Kelembaban dan Pemerataan Suhu Panas Pada Mesin Tetas Ayam Otomatis Berbasis *IoT* Menggunakan Aplikasi *Blynk*. Tugas Akhir, Teknik Elektronika, FTIK UN PGRI Kediri, 2025.

Kata kunci: mesin tetas otomatis, *IoT*, ESP32, suhu, kelembaban, *Blynk*.

Penelitian ini dilatar belakangi oleh permasalahan peternak ayam kampung skala kecil yang masih menggunakan metode manual dalam proses penetasan, sehingga kontrol suhu dan kelembaban kurang stabil dan menghambat keberhasilan penetasan. Padahal, suhu dan kelembaban yang sesuai sangat berpengaruh terhadap perkembangan embrio dan daya tetas telur ayam kampung. Oleh karena itu, dibutuhkan inovasi berupa mesin tetas otomatis berbasis *Internet of Things (IoT)* yang mampu melakukan monitoring dan kontrol suhu serta kelembaban secara otomatis dan *real-time*.

Permasalahan dalam penelitian ini adalah: (1) Bagaimana rancang bangun alat penetas telur ayam kampung otomatis berbasis *IoT*? (2) Bagaimana kinerja alat dalam memantau dan mengatur suhu, kelembaban, serta pemutaran telur? (3) Bagaimana pengaruh pemerataan suhu terhadap proses penetasan?

Penelitian ini menggunakan pendekatan rekayasa teknologi dengan model pengembangan prototipe. Instrumen yang digunakan berupa sensor DHT22, mikrokontroler ESP32, motor sinkron, kipas DC 12V, lampu pijar, dan *LCD* 16x2 I2C. Data dikumpulkan secara kuantitatif melalui pengukuran suhu dan kelembaban selama 16 hari, serta kualitatif melalui wawancara dengan peternak.

Kesimpulan dari hasil penelitian ini adalah: (1) Sistem berhasil dirancang dan berfungsi baik, ditandai dengan kemampuan alat dalam mengatur suhu dan kelembaban serta melakukan pemutaran rak telur otomatis. (2) Sistem mampu menjaga suhu rata-rata 37,73°C dan kelembaban 53,98%, yang berada dalam rentang ideal untuk penetasan. (3) Pemerataan suhu berjalan optimal, dengan selisih suhu antar sisi ruang inkubasi kurang dari 1°C. Dikatakan juga oleh Mitra bahwa alat yang telah dibuat oleh peneliti dapat bekerja dengan baik.

Pada penelitian selanjutnya disarankan untuk menambahkan sistem daya cadangan seperti UPS agar alat tetap berfungsi saat terjadi pemadaman listrik. Selain itu, penambahan waktu uji coba sampai fase akhir dan penambahan fitur notifikasi otomatis pada aplikasi *Blynk* ketika suhu atau kelembaban melewati batas yang ditentukan dapat meningkatkan respon dan keamanan proses penetasan.

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Allah SWT, karena berkat rahmat, taufik, dan karunianya, penulis dapat menyelesaikan tugas akhir berjudul "Rancang Bangun Sistem Monitoring Kelembaban dan Pemerataan Suhu Panas Pada Mesin Tetas Telur Otomatis Berbasis *IoT* Menggunakan Aplikasi *Blynk*" dengan baik. Dengan kerendehan hati, penyusunan tugas akhir ini tidak lepas dari bimbingan dan dukungan banyak pihak. Oleh karena itu, penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

- 1. Dr. Zainal Afandi, M.Pd., Rektor Universitas Nusantara PGRI Kediri, yang selalu memberikan motivasi kepada mahasiswa.
- Dr. Sulistiono, M.Si., Dekan Fakultas Teknik dan Ilmu Komputer Universitas Nusantara PGRI Kediri, yang telah memberikan dukungan dalam penyusunan tugas akhir ini.
- 3. Elsanda Merita Indrawati, M.Pd., Ketua Prodi D-III Teknik Elektronika, yang telah memberikan arahan dan motivasi kepada peneliti dalam penyusunan tugas akhir ini.
- 4. Miftakhul Maulidina, S.Pd., M.Si. Selaku dosen pembimbing 1 yang telah memberikan bimbingan dan bantuan dalam penyusunan tugas akhir ini.
- 5. M. Dewi Manikta Puspitasari, M.Pd. Selaku dosen pembimbing 2 yang juga telah memberikan bimbingan dan bantuan dalam penyusunan tugas akhir ini.
- 6. Ucapan terimakasih kepada kedua orang tua, yang selalu memberi doa dan dukungan moral maupun materi yang tak bisa terhitung, sehingga peneliti bisa menyelesaikan tugas akhir ini dengan baik.
- 7. Ucapan terimakasih kepada teman-teman kelas seangkatan Teknik Elektronika UNP Kediri angkatan tahun 2022 dan yang selalu menemani dari awal kuliah hingga sampai akhir semester serta membantu memberi motivasi sehingga peneliti bisa menyelesaikan tugas akhir ini.

8. Seluruh dosen dan staf Program Studi D3 Teknik Elektronika atas ilmu dan

dukungan yang telah diberikan. Serta kepada teman-teman Himpunan

Mahasiswa Teknik Elektronika (HITEK) atas bantuan dan suportnya.

Semoga tugas akhir ini dapat memberikan manfaat bagi penulis, mitra, dan

para pembaca. Penulis menyadari bahwa tugas akhir ini masih memiliki kekurangan

yang perlu diperbaiki. Oleh karena itu, kritik dan saran yang membangun sangat

kami harapkan.

Kediri, 30 Juni 2025

AHMAD PURWANTORO

NPM. 2223050014

viii

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PERSETUJUAN	ii
HALAMAN PENGESAHAN	iii
HALAMAN PERNYATAAN	iv
MOTTO	V
ABSTRAK	vi
KATA PENGANTAR	vii
DAFTAR ISI	ix
DAFTAR TABEL	xi
DAFTAR GAMBAR	xii
DAFTAR LAMPIRAN	xiii
BAB I PENDAHULUAN	1
A. Latar Belakang	
B. Batasan Masalah	
C. Rumusan Masalah	2
D. Tujuan Penelitian	3
E. Manfaat Penelitian	3
BAB II LANDASAN TEORI	4
A. Kajian Hasil Penelitian Terdahulu	
B. Landasan Teori	
1. ESP32	
2. Layar <i>LCD</i> 16x2 12C	
3. Sensor DHT 22	
4. Relay	
5. Aplikasi <i>Blynk</i>	
6. Motor Synchronous	
7. Kipas DC 12V	
8. Lampu Pijar	
C. Kerangka Berpikir	
BAB III METODE PENELITIAN	

A. M	Iodel Pengembangan	15
B. P	rosedur Pengembangan	15
C. D	esain Pengembangan	17
1.	Blok Diagram	17
2.	Wiring Diagram	19
3.	Desain Alur Program	20
D. T	empat dan Waktu Pengembangan	21
E. T	eknik Analisis Data	23
1.	Analisis Deskriptif Kuantitatif	23
2.	Analisis Deskriptif Kualitatif	24
F. M	Ietode Uji Coba	24
BAB IV	V HASIL DAN PEMBAHASAN	. 25
A. D	ata Hasil Pengembangan	25
1.	Deskripsi Alat	25
B. D	ata Uji Coba	26
C. A	nalisis Deskriptif Kuantitatif	28
1.		
2.	Pemerataan Suhu	29
3.	Frekuensi Pemutaran Rak Telur	30
D. A	nalisis Deskriptif Kualitatif	30
E. P	embahasan	31
BAB V	PENUTUP	. 33
	esimpulan	
	aran	
~.		
DAFT	AR PUSTAKA	. 35
LAMD	ID A N	37

DAFTAR TABEL

Tabel		Halaman
3.1	: Waktu Pengembangan	23
4.1	: Data Uji Coba Pukul 06.00	27
4.2	: Data Uji Coba Pukul 13.00	27
4.3	: Data Uji Coba Pukul 20.00	28
4.4	: Suhu Disetiap sisi	30

DAFTAR GAMBAR

Gambar		Halaman
2.1	: ESP32	9
2.2	: LCD 16x2 I2C	10
2.3	: Sensor DHT22	11
2.4	: Relay Modul	11
2.5	: Aplikasi Blynk	12
2.6	: Motor Synchronous	12
2.7	: Kipas DC 12V	13
2.8	: Lampu Pijar	14
3.1	: Flowchart Alur Pengembangan (Adaptasi Muktiawan et al.(20	025)) . 16
3.2	: Blok Diagram	17
3.3	: Wiring Diagram	19
3.4	: Alur Program	21
3.5	: Tempat Penetasan	22
4.1	: Desain Alat	26

DAFTAR LAMPIRAN

Lampiran		Halaman
1	: Program ESP32	37
2	: Daftar Pertanyaan Wawancara	41
3	: Tampilan Pada <i>LCD</i> dan <i>Blynk</i>	42
4	: Uji Coba Alat	43
5	: Saat Telur Menetas	44
6	: Bimbingan Tugas Akhir	45

BAB I PENDAHULUAN

A. Latar Belakang

Di Indonesia ayam lokal merupakan salah satu hewan ternak yang banyak dibudidayakan di daerah pedesaan, sebab ternak ayam tidak memerlukan tempat yang luas, pakan yang murah serta mudah untuk didapat. Meskipun budidaya ayam lokal ini mempunyai potensi besar, pengembangan ayam lokal masih menemui beberapa kendala (Nofendri et al., 2023). Dalam pelaksanaan budidaya ayam kampung salah satu masalah yang dihadapi oleh peternak adalah bagaimana menetaskan telur dengan mudah dan mendapatkan hasil yang baik. Problemnya lebih besar karena alat penetas yang digunakan peternak masih dilakukan secara manual, menggunakan sistem yang menghidupkan dan mematikan lampu pijar yang berfungsi sebagai penghangat. Selain itu, pemutaran telur yang dilakukan secara manual, dengan membuka pintu inkubator, menyebabkan suhu dan kelembaban di dalam ruangan tidak stabil (Wendanto et al., 2021).

Pada observasi dan wawancara peneliti bersama Pak Sofyan salah satu peternak dan pembuat alat tetas telur ayam bersekala kecil yang berada di Desa Pojok Kecamatan Mojoroto Kota Kediri, beliau menyatakan bahwa kurangnya pemahaman tentang pentingnya pengaturan suhu dan kelembaban dalam penetasan telur membuat kurang efisiennya proses penetasan telur, sehingga banyak telur yang tidak dapat menetas ataupun mati. Sejalan dengan itu, Nofendri et al., (2023) menyatakan bahwa para peternak lokal masih banyak menggunakan metode tradisional untuk melakukan penetasan telur. Ada banyak metode yang dapat digunakan untuk menetaskan telur. Salah satunya adalah membuat mesin tetas yang mampu menghasilkan jumlah tetas yang sesuai dengan kebutuhan serta mempermudah pemantauaan kondisi inkubator melalui perangkat komputer. Mesin penetas telur otomatis merupakan modifikasi dari alat konvensional yang dirancang untuk menjaga suhu ideal antara 35,3°C hingga 40,5°C dan kelembaban 70–80%, dengan memanfaatkan lampu pijar sebagai sumber pemanas utama serta kipas sebagai sirkulasi udara untuk mendukung proses penetasan secara optimal (Yoal et

al., 2023). Penggunaan alat penetasan telur secara otomatis berbasis *Internet of Things (IoT)* dapat membantu peternak untuk dapat lebih mudah mengontrol suhu dan kelembaban yang dibutuhkan saat penetasan telur secara langsung. Peternak tidak perlu untuk menyalakan atau mematikan lampu secara manual, sehingga mempermudah pekerjaan peternak.

Penelitian tentang penetasan telur otomatis juga telah dilakukan oleh Asali & Sollu (2021) Hasil penelitian menunjukkan bahwa penelitian tentang pembuatan sistem penetasan telur otomatis untuk memantau kelembaban dan suhu dapat berfungsi dengan baik, akan tetapi pada penelitian tersebut masih terdapat kekurangan yaitu tentang uji penetasan yang kurang efisian dikarenakan saat pengujian terjadi pemadaman listrik, sehingga dari 20 telur yang diuji hanya ada 4 telur yang dapat menetas. Beberapa studi juga telah mencoba menggunakan *Internet of Think (IoT)* untuk pemonitoringan suhu dan kelembaban pada saat penetasan telur, namun implementasi di desa-desa masih sangat terbatas. Oleh karena itu, peneliti menarik judul yang berfokus pada alat tetas telur ayam kampung otomatis berbasis *IoT* dengan modul ESP32.

B. Batasan Masalah

Agar lebih mengarah ke pokok permasalahan yang ada serta tidak menyimpang ke permasalahan lain, maka peneliti memberi batasan sebagai berikut:

- Hanya berfokus pada penetasan telur ayam kampung di Desa Pojok Kecamatan Mojoroto Kota Kediri.
- 2. Penelitian ini difokuskan pada pemonitoringan kelembaban, dan pemerataan suhu panas pada ruang tetas.
- 3. Tempat penetasan maksimal berisi 20 butir telur ayam kampung.
- 4. Pengujian alat hanya dilakukan selama 16 hari.

C. Rumusan Masalah

Berdasarkan latar belakang diatas maka rumusan masalah dari penelitian alat penetas telur ayam otomatis berbasis *IoT* dengan modul ESP32 adalah

- 1. Bagaimana rancang bangun alat penetasan telur ayam otomatis berbasis *IoT* dengan pemerataan suhu dan kelembaban di Desa Pojok Kecamatan Mojoroto Kota Kediri?
- 2. Bagaimana kinerja alat penetas telur ayam kampung otomatis berbasis *IoT* dalam memantau dan mengatur suhu, kelembaban, serta pemutaran telur?
- 3. Bagaimana pengaruh pemerataan suhu dalam penetasan telur?

D. Tujuan Penelitian

Berdasarkan latar belakang dan tujuan masalah diatas maka tujuan penelitian ini adalah:

- Mengetahui rancang bangun alat penetasan telur ayam kampung otomatis berbasis *IoT* dengan pemerataan suhu dan kelembaban di Desa Pojok Kecamatan Mojoroto Kota Kediri.
- 2. Mengetahui kinerja alat penetas telur ayam kampung otomatis berbasis *IoT* dalam memantau dan mengatur suhu, kelembaban, serta pemutaran telur.
- 3. Mengetahui pengaruh pemerataan suhu dalam ruang penetasan telur.

E. Manfaat Penelitian

Manfaat dari penelitian ini yaitu dengan adanya alat penetas telur ayam kampung otomatis berbasis *IoT* ini mampu meningkatkan keberhasilan dalam melakukan penetasan telur di Desa Pojok Kecamatan Mojoroto Kota Kediri, serta dapat memudahkan peternak dalam melakukan pemonitoringan kelembaban dan suhu yang diperlukan dalam penetasan secara otomatis.

DAFTAR PUSTAKA

Adriaensen, H., Parasote, V., Castilla, I., Bernardet, N., Halgrain, M., Lecompte, F., & Réhault-Godbert, S. (2022). How Egg Storage Duration Prior to Incubation Impairs Egg Quality and Chicken Embryonic Development: Contribution of Imaging Technologies. *Frontiers in Physiology*, 13(May), 1–

12. https://doi.org/10.3389/fphys.2022.902154

Anang Sucipto, M., & Bagus Prakoso, S. (2022). Rancang Bangun Alat Penetas Telur Otomatis berbasi Arduino. *Jurnal FORTECH*, *3*(1), 43–50. https://doi.org/10.56795/fortech.v3i1.106

Asali, S., & Sollu, T. S. (2021). Rancang Bangun Alat Penetas Telur Ayam Otomatis Dengan Pengiriman Data Via Sms Gateway Berbasis Arduino Nano. *Foristek*, 11(1), 57–67. https://doi.org/10.54757/fs.v11i1.105

Jusman, M. R. R., Masita, S., & Dzarfaraby, M. (2021). Sistem Kontrol & Monitoring Mesin Penetas Telur Berbasis Iot (Internet Of Things).

Mechatronics Journal In Professional and Entreprenuer, *3*(2), 64–71.

Mukhlis, S., Puspasari, R., & Kom, M. (2023). Perancangan Alat Penetasan Telur Otomatis Menggunakan Bluetooth Berbasis Arduino Uno. *Jurnal Rekayasa Sistem ...*, *1*(3), 1202–1213. https://kti.potensi-utama.org/index.php/JUREKSI/article/download/1106/304

Muktiawan, D. A., Nugroho, B., Sudibyo, N. H., & Septiawan, Y. (2025). Sistem Monitoring dan Pengendalian Alat Penetas Telur Berbasis IoT untuk Optimasi Tingkat Keberhasilan Penetasan. *Jurnal Pendidikan Teknologi Informasi Dan Komunikasi*, 11(1), 128–137. https://doi.org/10.31980/jpetik.v

Nisa, S., & Andreansyah, I. (2024). *Jurnal Kecerdasan Buatan*, *Komputasi dan Teknologi Informasi Mesin Penetas Telur Otomatis Berbasis Internet of Things*. 5(2), 135–146.

Nofendri, Y., Prayoga, C., Aditya, Y., & ... (2023). Implementasi Alat Penetas Telur Untuk Peternak Skala Kecil. *SULUH: Jurnal*

https://journal.univpancasila.ac.id/index.php/SULUH/article/view/4603%0A https://journal.univpancasila.ac.id/index.php/SULUH/article/download/4603/ 2521

Noviansyah, Y., & Abdulrahman, E. (2022). Rancang Bangun Inkubator Penetas Telur Otomatis Menggunakan Sensor Suhu Berbasis Mikrokontroler Wemos D1 Esp8266. *Jurnal Teknik Elektro Raflesia*, 2(1), 21–29.

http://ejournal.polraf.ac.id/index.php/JTERAF/article/view/135

Purnama, I., Ambiyar, A., Rizal, F., Verawardina, U., Raharjo, S. D., & Karim, A. (2021). Mesin Penetas Telur Menggunakan Microcontroller ATMega328 Berbasis Arduino. *Jurnal Media Informatika Budidarma*, *5*(2), 431. https://doi.org/10.30865/mib.v5i2.2816

Salsabila, M., Halim, M., Tambun, N., Aurora, D., Lestari, R., & Nurmasyitah. (2022). Alat Penetas Telur Sederhana. *GRAVITASI Jurnal Pendidikan Fisik* 5(1), 17–23.

Setyawan, A., Yulianto, & Budi, E. S. (2024). Penetas Telur ayam Otomatis dengan Metode Fuzzy Logic Control Dalam Upaya Meningkatkan Penetasan. *Jurnal Elektronika Dan Otomasi Industri*, 11(1), 54–64. https://doi.org/10.33795/elkolind.v11i1.3488

Wendanto, W., Prasetyo, O. B., Praweda, D. R., & Kusuma Arbi, A. R. (2021). Alat Pengontrolan Suhu Penetas Telur Otomatis Menggunakan ESP8266 Wemos D1 Mini Berbasis Internet of Things. *Go Infotech: Jurnal Ilmiah STMIK AUB*, 27(2), 167–176. https://doi.org/10.36309/goi.v27i2.154

Yoal, H., Dirgantara, W., & Subairi, S. (2023). Monitoring Suhu dan Kelembaban pada Penetas Telur Otomatis Menggunakan Metode Fuzzy Sugeno Berbasis IoT. *Blend Sains Jurnal Teknik*, 2(2), 176–183. https://doi.org/10.56211/blendsains.v2i2.356