Dela Karmeylia Putri

anonymous marking enabled

Submission date: 04-Jul-2024 04:35AM (UTC+0500)

Submission ID: 2412230962

File name: 2013020193_Dela_Karmeylia_Putri_-_dela_putri.pdf (1.44M)

Word count: 9820 Character count: 53752

PERBANDINGAN METODE SIMPLE ADDITIVE WEIGHTING DAN PROFILE MATCHING PADA SISTEM REKOMENDASI SMARTPHONE

Diajukan Untuk Penulisan Skripsi Guna Memenuhi Salah Satu Syarat

Memperoleh Gelar Sarjana Komputer (S.Kom.)

Pada Prodi Teknik Informatika FTIK UN PGRI Kediri

OLEH:

Dela Karmeylia Putri

NPM: 2013020193

FAKULTAS TEKNIK DAN ILMU KOMPUTER (FTIK)
UNIVERSITAS NUSANTARA PERSATUAN GURU REPUBLIK INDONESIA
UN PGRI KEDIRI
2024

BAB I PENDAHULUAN

A. Latar Belakang

Smartphone merupakan ekstensi dari telepon genggam atau dapat disebut alat telekomunikasi elektronik yang mempunyai kemampuan dasar sama dengan telepon konvensional nirkabel yang praktis dapat dibawa kemanapun dan memiliki banyak kelebihan (Fakhrizal, 2023). Selain dijadikan media komunikasi melalui chat maupun video call juga dapat sebagai media berbagi lokasi dengan GPS, mengakses internet dan lainnya.

Eric Agus Wicaksono dalam penelitiannya memjelaskan beberapa informasi mengenai beberapa hal secara umum dipertimbangkan pada faktor pemilihan smartphone yaitu multimedia, harga dan pengaruh eksternal lainnya seperti kebutuhan pengguna gaming, kebutuhan RAM besar untuk pengguna siswa maupun mahasiswa dll. Kebanyakan pengguna laki-laki memiliki penilaian tinggi terhadap faktor merk dan spesifikasi dari produk tersebut. Sedangkan, perempuan lebih kepada kebutuhan multimedia seperti keunggulan kamera, dan fasilitas unggul lainnya (Eric, 2020). Pada dasarnya semua bergantung pada kebutuhan masing-masing konsumen yang disebut sebagai pengaruh eksternal faktor tersebut mempengaruhi beberapa hal yakni, kebutuhan akan spesifikasi RAM yang harus besar, Resolusi Kamera yang tinggi serta Kapasitas Baterai yang besar dalam menunjang penggunaan pada kegiatan outdoor yang lebih lama. Seringkali pembeli dihadapkan dengan masalah saat berbagai alternatif disediakan sesuai dengan kebutuhannya, tapi mengalami kesulitan dalam memilih satu dari beberapa alternatif dengan kebutuhan spesifikasi yang sama. Sedangkan, pemilik toko smartphone seringkali mengunggulkan brand smartphone yang memberikan

keuntungan pada tokonya, bukan pada *smartphone* yang terbaik sesuai dengan spesifikasi dan kebutuhan pengguna (Yuninda, 2020).

Husnul Abdi di laman Liputan6.com pada tanggal_20 Juni 2023, mengungkapkan bahwa konsumen perlu penuh perhatian agar tepat dalam memilih. Smartphone Android ataupun iPhone memiliki kelebihan dan kekurangan masing-masing untuk kamu pertimbangkan. Apalagi, saat ini vendor smartphone makin gencar memberikan inovasi terbaru. sehingga menyebabkan banyak konsumen yang mengalami kesulitan dalam memilih smartphone yang sesuai dengan keinginan atau kebutuhannya. Hal ini membuat banyak peneliti berlomba membuat sistem yang dapat membantu konsumen dalam memilih smartphone, yang sesuai kebutuhannya. Diantaranya Penelitian yang dilakukan oleh Muhammad Kukuh Firmansyah dengan judul Handphone Product Selection System Using the Profile Matching Method (Firmansyah, 2022), Lya Rosita Sari dengan judul Smartphone Selection Recommendation System (Sari, 2022), Hapidzul Nurinadi dengan judul Penerapan Metode Simple Additive Weighting (SAW) dan Weighted Product (WP) Dalam Sistem Pendukung Keputusan Pemilihan Smartphone Berbasis Website (Nurinadi, 2022), dan Agus Setiyawan dengan Judul Sistem Penunjang Keputusan Pemilihan Smartphone Gamers Terbaik Dengan Metode Simple Additive Weighting, Weighted Product (WP) dan Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) (Setiyawan, 2023).

Akan tetapi belum diketahui metode terbaik yang dapat digunakan untuk merekomendasikan *Smartphone* yang sesuai dengan kebutuhan konsumen. Maka dari itu peneliti mengajukan penelitian untuk membandingkan 2 metode, yaitu SAW dan *Profile Matching* untuk mendapatkan rekomendasi smartphone yang sesuai dengan spesifikasi yang dicari. Beberapa pilihan *Smartphone* yang direkomendasikan didapat dari perhitungan menggunakan perbandingan metode SAW dan *Profile Matching* dengan penilaian bobot setiap kriteria yang telah ditentukan

sesuai keadaan lapangan yang sesungguhnya. Metode SAW digunakan pada penelitian ini karena metode SAW merupakan salah satu teknik pengambilan keputusan multi-kriteria yang digunakan untuk memberikan nilai bobot pada setiap kriteria dan menghitung total bobot untuk setiap alternatif. Sedangkan Metode *Profile Matching* dipilih karena merupakan salah satu metode pengambilan keputusan yang digunakan untuk membandingkan profil atau karakteristik kandidat atau objek dengan profil referensi atau preferensi yang telah ditentukan.

B. Identifikasi Masalah

Berdasarkan penjelasan latar belakang tertulis, dapat diidentifikasikan masalah yang ada adalah banyak konsumen mengalami kesulitan dalam memilih *smartphone* sesuai dengan yang dicari berdasarkan keinginan atau kebutuhannya dan belum diketahuinya metode terbaik yang dapat digunakan untuk merekomendasikan *smartphone* sesuai pencarian konsumen.

C. Rumusan Masalah

- 1. Bagaimana mengimplementasikan metode *Simple Additive Weighting* untuk merekomendasikan *smartphone* ?
- 2. Bagaimana mengimplementasikan metode *Profile Matching* untuk merekomendasikan *smartphone*?
- 3. Apakah metode *Simple Additive Weighting* lebih akurat daripada Profile Matching pada hasil perhitungan menggunakan MSE?

1 D. Batasan Masalah

Berdasarkan rumusan masalah, maka dibuat batasan masalah sebagai berikut:

- Data spesifikasi smartphone dari laman GSM Arena, yang telah disediakan oleh situs kaggle.com.
- Karakteristik data yang diambil berupa spesifikasi Resolusi Kamera, RAM, ROM, Ukuran Layar, Kapasitas Baterai, Android Version, Jenis Layar dan Harga.
- 3. Metode SAW digunakan untuk menentukan *smartphone* terbaik dari beberapa alternatif yang disediakan pada sistem.
- 4. Metode *Profile Matching* digunakan untuk menentukan *smartphone* terbaik dari beberapa alternatif yang disediakan pada sistem.
- 5. Aplikasi dibangun menggunakan Bahasa pemrograman PHP
- 6. Database Server yang digunakan MySQL Server
- Evaluasi hasil rekomendasi diuji menggunakan Mean Squaded Error (MSE).
- 8. Hasil dari penelitian ini adalah metode terbaik untuk merekomendasikan *smartphone*.

E. Tujuan Masalah

Adapun tujuan dari penelitian ini adalah:

- Mengimplementasikan metode Simple Additive Weighting untuk merekomendasikan smartphone
- Mengimplementasikan metode Profile Matching untuk merekomendasikan smartphone
- 3. Membandingkan metode *Simple Additive Weighting* dan *Profile Matching* pada sistem rekomendasi pemilihan smartphone.

F. Manfaat Penelitian

Manfaat yang diharapkan dari penelitian ini adalah Metode terbaik hasil perbandingan dapat digunakan metode pengolahan data pada aplikasi yang dibuat khusus untuk merekomendasikan *smartphone*.

G. Metodologi Penelitian

Bagian ini berisikan beberapa tahapan yang digunakan peneliti dalam memecahkan masalah yang sesuai dengan penelitian ini. Tahapan-tahapan tersebut sebagai berikut:

1. Studi Literatur

1) Wawancara

Wawancara merupakan teknik tanya jawab dengan orang yang berhubungan secara langsung dengan topik yang dibahas dalam penelitian ini.

2) Studi Pustaka

Tahapan ini dilakukan dengan mencari referensi jurnal maupun artikel terdahulu mengenai analisis perbandingan menggunakan metode *profile matching* dan metode *Simple Additive Weighting* (SAW).

2. Pengumpulan dan Preprocessing Data

Tahap ini dilakukan untuk mengumpulkan data *Smartphone* sesuai dengan kebutuhan peneliti. Setelah data terkumpul, data dapat diolah dengan menggunakan metode *Simple Additive Weighting* (SAW) dan metode *Profile Matching*.

3. Rancangan Sistem

Rancangan Sistem dilakukan bertujuan untuk merancang sistem yang akan dibangun meliputi user interface sistem, desain sistem dan konsep berjalannya sistem.

4. Pemrograman

Setelah tahap rancangan sistem selesai, tahap selanjutnya berfokus pada pembangunan sistem. Implementasi sistem dengan *sourch code* menggunakan Bahasa pemrograman PHP pada Visual Studio Code dan MySQL.

Pengujian Program

Pengujian sistem dilakukan dengan tujuan pengecekan hasil pembangunan sistem apakah sudah sesuai dengan rancangan sistem dan fungsionalitasnya sudah berjalan baik atau belum.

6. Perbaikan Sistem

Dilakukan perbaikan sistem pada kesalahan yang terdeteksi pada pengujian program, sehingga sistem dapat berjalan dan berfungsi sesuai dengan rancangan sebelumnya.

7. Penyusunan Laporan

Tahap terakhir yaitu penyusunan laporan. Laporan berisikan pembahasan keseluruhan penelitian yang terdiri dari pengolahan data menggunakan metode SAW dan *Profile Matching*, pembangunan sistem serta hasil dan kesimpulan penelitian.

H. Jadwal Penelitian

Penelitian ini dilakukan sekitar 6 bulan dengan keterangan jadwal sebagai berikut :

1 Tabel 1.1 Jadwal Penelitian

No.	No. Jenis Kegiatan		ula e-1				ula e-2				ulaı e-3				ula e-4			Bu Ke	ılan 2-5				ılar e-6	ı	
	Kegiatan	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1.	Studi Literatur																								
2.	Pengumpulan Data																								
3.	Rancangan Sistem																								

4.	Pemrograman												
5.	Pengujian Program												
6.	Perbaikan Sistem												
7.	Penyusunan Laporan												

1. Sistematika Penulisan

Sistematika penulisan yang digunakan dalam penyusunan laporan proposal sebagai berikut:

BAB I PENDAHULUAN

Bab ini menjelaskan latar belakang, identifikasi masalah, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, metode penelitian, jadwal penelitian dan sistematika penulisan untuk dijadikan acuan bagi penulis dalam pengerjaan tugas akhir.

BAB II TINJAUAN PUSTAKA

Bab ini berisi tentang uraian teori yang mencakup topik yang dibahas dalam penelitian ini. Teori tersebut bersumber dari beberapa referensi dari buku dan jurnal terdahulu.

BAB III ANALISA DAN DESAIN SISTEM

Bab ini berisi mengenai analisis perancangan dari sistem. Meliputi kebutuhan data, kebutuhan perangkat lunak serta rancangan sistem seperti use case diagram, sequence diagram, activity diagram, class diagram dan design interface sistem

BAB IV HASIL DAN EVALUASI

Bab ini berisi uraian penelitian meliputi hasil dari penelitian dan evaluasi dari hasil yang telah disimpulkan.

BAB V PENUTUP

Bab ini berisi kesimpulan dan saran mengenai keseluruhan pembahasan selama proses pengerjaan tugas akhir.

BAB II

LANDASAN TEORI

A. Landasan Teori

Peneliti menggunakan beberapa teori sebagai landasan pada penelitian ini, yaitu sebagai berikut:

1. Metode Simple Additive Weighting (SAW)

Metode SAW merupakan metode penjumlahan terbobot dengan konsep dasar mencari penjumlahan terbobot atas rating kinerja pada masing-masing alternatif di semua atribut. Proses normalisasi matriks keputusan (x) kedalam sebuah skala adalah salah satu proses yang dibutuhkan metode ini untuk melakukan perbandingan dengan rating alternatif yang ada (Resti, N. C., 2017). Nilai total didapatkan dari penjumlahan hasil perkalian matriks ternormalisasi dengan nilai bobot ketetapan awal tiap kriteria.

Adapun algoritma perhitungan metode *Simple Additive Weighting* sebagai berikut:

- Menentukan kriteria (C) sebagai acuan perhitungan dalam penyelesaian masalah (Sari et al., 2022).
- Membuat matriks keputusan (X) yang didapat dari rating kecocokan pada setiap alternatif.
- Melakukan normalisasi matriks (R) berdasarkan pengelompokan kriteria berdasarkan atribut benefit dan atribut cost, dengan formula:

Jika atribut keuntungan (benefit)

a.
$$R_{ij} = \frac{x_{ij}}{\max_{i} x_{ij}}$$
....(1)

Jika atribut biaya (Cost)

b.
$$R_{ij} = \frac{X_{ij}}{\max_{ij} X_{ij}}$$
....(2)

Keterangan:

14

 R_{ij} : Nilai rating kinerja ternormalisasi

 X_{ij} : Nilai atribut yang dimiliki pada setiap kriteria max_{ij} : Nilai terbesar suatu alternatif pada setiap kriteria min_{ij} : Nilai terkecil suatu alternatif pada setiap kriteria

Benefit : Atribut keuntungan

Cost : Atribut biaya

- Menentukan bobot kriteria (W). Bobot ini dijadikan acuan untuk penilaian setiap kriteria (C) pada suatu alternatif di perhitungan nilai akhir preferensi.
- Melakukan perhitungan nilai akhir preferensi (V), dengan formula :

$$V_{i} = \sum_{j=1}^{n} W_{j} R_{ij}....(3)$$

Keterangan:

Vi : Nilai preferensi pada setiap alternatif

W_i : Bobot kriteria

 R_{ij} : Nilai dari setiap alternatif smartphone setelah dinormalisasi.

- 6. Tahap terakhir, perangkingan nilai akhir. Nilai preferensi (V_i) yang paling besar menjadi solusi alternatif terpilih.
- 7. Metode *Profile Matching*

Metode Profile Matching adalah proses perbandingan nilai data aktual dengan nilai profile yang akan diketahui dari nilai gap objek tersebut. Proses Profil Matching dapat disimpulkan bahwa semakin besar nilai gap suatu alternatif yang diajukan maka, bobot nilai yang diperoleh semakin kecil. Begitupun sebaliknya, semakin kecil nilai

gap nya, semakin besar pula bobot nilai yang diperoleh (Saraski et al., 2022).

Nilai GAP yang dimaksud pada *Profile Matching* adalah hasil pengurangan dari bobot kriteria dengan profil pencapaian kriteria yang telah ditentukan. Ada beberapa aturan dari nilai GAP yang sudah terkonsep sesuai dengan skala prioritas setiap kriteri dengan range 0-5. Hal itu membuat perhitungan *Profile Matching* seringkali direkomendasikan sebagai metode terbaik dalam Sistem Pendukung Keputusan. Skala prioritas bobot nilai GAP sebagai berikut:

Tabel 2.1 Skala prioritas GAP Profile Matching

Selisih	Bobot Nilai	Keterangan
0	5	Tidak ada gap (Kompetensi sesuai
		yang dibutuhkan)
1	4,5	Kompetensi individu kelebihan 1
		tingkat/level
-1	4	Kompetensi individu kelebihan 1
19		tingkat/level
2	3,5	Kompetensi individu kelebihan 2
		tingkat/level
-2	3	Kompetensi individu kelebihan 2
	19	tingkat/level
3	2,5	Kompetensi individu kelebihan 3
		tingkat/level
-3	2	Kompetensi individu kelebihan 3
		tingkat/level
4	1,5	Kompetensi individu kelebihan 4
60		tingkat/level
-4	1	Kompetensi individu kelebihan 4
		tingkat/level

Hal penting yang harus dipahami dalam penyelesaian algoritma

Profile Matching, sebagai berikut:

 Menentukan aspek penilaian bobot kriteria yang telah dijadikan sebagai tolak ukur dalam penyelesain masalah pemilihan smartphone terbaik.

2.	Menentukan	skala	prioritas	atau	value	target	masing-n	nasing
	kriteria (prof	il krite	ria) yang	akan	dijadik	an pen	definisian	untuk
	mendapatkan	nilai C	GAP.					

- 3. Menghitung dan melakukan pemetaan nilai GAP dengan rumus :
 - GAP = nilai bobot masukkan profil kriteria
 Selanjutnya, melakukan pemetaan nilai GAP dengan aturan bobot
 nilai GAP seperti yang tertera pada Tabel 2.
- 4. Mengelompokkan kriteria yang termasuk dalam core factor (faktor utama) dan secondary factor (faktor pendukung), lalu melakukan perhitungan rata rata core factor (NFC) dan rata-rata secondary factor (NSF) dengan rumus:

$$NCF = \frac{\sum NC}{\sum IC}$$
 (4)

$$NSF = \frac{\sum NS}{\sum IS}.$$
 (5)

Keterangan:

NCF: Nilai rata-rata Core Factor

NC: Jumlah total nilai Core Factor

IC: Jumlah item Core Factor

NSF: Nilai rata-rata Secondary Factor

NS: Jumlah total nilai Secondary Factor

IS: Jumlah item Secondary Factor

 Melakukan perhitungan nilai total rata-rata core factor dan secondary factor dengan rumus:

$$N = (X)\% NCF + (X)\% NSF$$
....(5)

Adapun presentase yang telah ditentukan untuk core factor 60% dan secondary factor 40%

 Langkah terakhir, melakukan perangkingan berdasarkan hasil akhir yang diperoleh.

3. Mean Squared Error (MSE)

MSE merupakan metode yang menghasilkan nilai eror dari hasil pencarian menggunakan nilai kuadrat hasil pengurangan dari data aktual dan data hasil prediksi (Pranoto, Harianto, & Iswanto, 2020). MSE ini memberikan informasi seberapa dekat nilai hasil perhitungan kedua metode dengan nilai aktualnya. Semakin kecil nilai MSE. Semakin kecil nilai yang dihasilkan maka semalkin akurat hasil dari nilai perhitungan metode tersebut. perhitungan pada sistem dengan menggunakan metode SAW dan Profile Matching dibandingkan dengan hasil sebenarnya secara keseluruhan. Sehingga dalam konteksnya, nilai MSE ini dijadikan sebuah evaluasi dalam penelitian dari perbandingan dua metode tersebut untuk menentukan alternatif smartphone terbaik. MSE dihitung dengan rumus:

$$\frac{1}{n}\sum_{i=1}^{n}\Delta_{i}^{2}....(6)$$

$$\Delta^2 = y_i - \widehat{y}i. \tag{7}$$

Dimana:

n = jumlah total data

 y_i = nilai aktual dari data ke- i

 $\widehat{y}i$ = nilai yang diprediksi dari data ke-i

4. Black-Box Testing

Black-Box Testing merupakan Teknik pengujian dimana, berfokus hanya pada fungsionalitas program yang berjalan. Black-box testing dilakukan dengan mengumpulkan kondisi masukan dan diberikan keterangan berupa kesimpulan apakah fungsionalitas program berhasil berjalan.

Fungsi pada sistem merupakan hal yang lebih difokuskan pada pengujian ini (Ikhlasani & Putro, 2019). *Black-box testing* memiliki kelebihan berupa pencarian aspek yang tidak terpenuhi dalam fungsional program. Untuk kekurangannya pengujian ini tidak bisa dilakukan secara sepenuhnya dikarenakan terbatasnya penguji mengenai perangkat lunak yang diuji (Krismadi, et al., 2023).

5. White-Box Testing

White-Box Testing adalah salah satu cara dalam menguji keberhasilan aplikasi atau software dengan menganalisa kode yang sesuai dengan alur program. Dikarenakan dikenal menguji segala bagian kode yang mampu diuji pada struktur internal maka, uji ini dorancang berdasarkan perspektif pengmbang yang tujuannya menentukan kesalahan logis dari kode alur program yang berjalan (Praniffa, et al. 2023).

White-box testing dapat menghapus kode tersembunyi dari bagian asing, dapat mengeksplorasi seluruh bagian struktur atau logika sistem dikarenakan dapat melakukan pengujian secara keseluruhan. Berikut merupakan rumus dalam perhitungan jumlah path dalam white-box

testing:
$$V\{G\} = E - N + 2$$
 (8)

Dimana:

E = Jumlah edge (tepi) dalam graf alir

N = Jumlah Node (simpul) dalam graf alir

4. Profil Admin dan Teknisi Smartphone Legowo Cell

Aldian bekerja pada bidang penjualan smartphone di Legowo Cell yang beralamat di Jl. Joyoboyo No. 22, Karangrejo, Kec. Ngasem Kab. Kediri, selama 2,5 tahun sejak tahun 2021. *Jobdesk* sebagai teknisi service smartphone sekaligus admin yang pejualan smartphone baru maupun smartphone second secara offline ataupun online. Dalam pelayanan pembelian offline, beliau merekomendasikan beberapa smartphone kepada pembeli yang datang ke Legowo Cell sesuai dengan spesifikasi yang disebutkan. Sedangkan, pelayanan online, beliau merespon pembeli pada akun Legowo Cell melalui chat, selanjutnya merekomendasikan beberapa smartphone dengan spesifikasi yang dicari dengan memberikan foto kondisi smartphone di toko. Setelah pembeli deal, dilakukan transaksi secara langsung ke offline store.

B. Kajian Pustaka

Dalam melakukan penelitian diperlukan referensi dari jurnal terdahulu agar dapat dijadikan penambahan informasi yang sesuai dengan studi kasus pada penelitian ini.

Penelitian oleh Lya Rosita Sari pada tahun 2023 berjudul "Smartphone Selection Recommendation System" yang mengangkat permasalahan mengenai kesulitan konsumen smartphone dalam memilih alternatif yang tepat dikarenakan semakin maju perkembangan teknologi semakin banyak fitur terbaru yang dikeluarkan perusahaan smartphone. Namun, konsumen seringkali terkendala dalam akses informasi yang tepat mengenai kriteria yang sesuai dengan kebutuhannya. Maka dari itu, penelitian ini dilakukan dengan tujuan memberikan kemudahan kepada pengguna dengan dibangunnya sistem pemilihan smartphone berdasarkan kebutuhan, fitur dan harga yang ditetapkan menggunakan metode SAW.

Sehingga memberikan manfaat sebagai ruang konsumen untuk mengambil keputusan sendiri yang lebih terinformasi dengan bantuan sistem pemilihan *smartphone* berdasarkan kriteria yang dibutuhkan. Setelah melakukan penelitian hasil yang didapat alternatif V_3 terpilih menjadi solusi terbaik dari ketiga alternatif yang disediakan. Selanjutnya menggunakan pengujian fungsional disimpulkan bahwa perangkat lunak berhasil menjalankan fungsionalnya yang meliputi form landing, pemilihan spesifikasi dan form hasil pemilihan spesifikasi. Penelitian ini memberikan kontribusi praktis dengan keberhasilan dibangunnya sistem rekomendasi yang relevan dan berhasil difungsikan kegunaannya. Namun sayangnya, sistem ini mungkin mengalami keterbatasan alternatif sebagai sempel yang tidak bisa update secara otomatis. Membuat pengguna tidak dapat mengakses preferensi secara luas dan menyeluruh dalam pemilihan smartphone.

Penelitian oleh Muhammad Kukuh Firmansyah berjudul "Handphone Product Selection System Using the Profile Matching Method". Dengan mengangkat masalah, tujuan dan manfaat penelitian yang sama dengan penelitian dari Lya Rosita Sari, hanya saja membedakan pada ketetapan metode nya yaitu *Profile Matching*. Berdasarkan hasil dari penelitian ini, dapat ditarik kesimpulan bahwa sistem pemilihan produk handphone telah berhasil diimplementasikan sebagai pembantu konsumen dalam pemilihan handphone sesuai kebutuhannya dengan menggunakan metode profile matching. Disisi lain, peneliti tidak secara eksplisit menyebutkan keterbatasan ataupun hambatan dalam melakukan penelitian. Namun, dalam sebuah sistem pendukung keputusan kelemahan yang sering terjadi pada penelitian yaitu keterbatasan dalam penyediaan data terbaru secara real time.

Penelitian oleh Muhammad Syahril, Sri Murniyanti, Dicky Nofriansyah, Kamil Erwansyah, Nurmala Sari, 2023 "Rekomendasi Pemilihan Handphone Android Terbaik Berdasarkan Daya Beli Konsumen Menggunakan Metode Profile Matching" membahas permasalahan mengenai kesulitan konsumen dalam memilih handphone berdasarkan kemampuan daya beli nya karena semakin banyak handphone dengan fitur canggih dan persaingan merk memberikan harga yang berkualitas sesuai dengan kualitasnya. Penelitian ini bertujuan memberikan kemudahan konsumen dalam pemilihan handphone android terbaik berdasarkan kemampuan yang dimiliki. Dengan dibangunnya sistem pendukung keputusan ini diharapkan bermanfaat bagi konsumen agar mempermudah dalam pemilihan handphone sesuai daya beli konsumen. Penelitian menghasilkan sistem yang dapat diemplementasikan pada toko Trans Cell. Hasil perhitungan dari kategori/jenis handphone yang tersedia didapat nilai tertinggi pada handphone merk Oppo A53 dengan nilai 4,3. Kelebihan dari penelitian ini memberikan informasi secara rinci mengenai data, langkahlangkah perhitungan dan implementasi sistem yang mendukung rekomendasi tersebut. Namun, dalam penelitian ini baik perhitungan maupun implementasi sistem kriteria untuk perhitungannya berjalan secara berkelompok berdasakan *range* bukan secara global/menyeluruh.

Penelitian oleh Qorinul Ahlamiyah, Rani Irma Handayani dan F. Lia Dwi Cahyani, 2022 "Komparasi Pemilihan Platform Belanja Online dengan Menggunakan Metode Simple Additive Weighting (SAW) dan Profile Matching" membahas mengenai perkembangan bisnis Indonesia dalam hal belanja online atau E-Commerce. Membantu konsumen dalam memilih platform yang sesuai dengan kebutuhan mereka adalah tujuan dari penelitian ini. Penelitian ini secara langsung memberikan manfaat yang signifikan kepada pola pikir konsumen dalam memberikan kepercayaan terhadap platform E-commerce terbaik sesuai dengan perhitngan metode SAW dan metode Profile Matching. Penelitian ini melakukan pengumpulan data dengan cara kuisioner dan wawancara langsung dengan pengguna online shop sehingga, memberikan pemahaman yang lebih komprehensif tentang preferensi pengguna. Sedangkan kendala atau

kekurangan dalam penelitian ini berkaitan dengan waktu pengerjaan, dikarenakan pencarian responden yang tidak mudah untuk menjadi bahan penelitian. Hasil perangkingan menunjukkan bahwa platform Shopee menduduki peringkat pertama sebagai platform terbaik dalam belanja online baik melalui perhitungan metode SAW maupun metode Profile Matching.

Penelitian oleh Hapidzul Nurinadi, Barry Ceasar Octariadi S.Kom. M.Cs , Alda Cendekia Siregar S.Kom., M.Cs tahun 2022 berjudul "Penerapan Metode Simple Additive Weighting (SAW) dan Weighted Product (WP) Dalam Sistem Pendukung Keputusan Pemilihan Smartphone Berbasis Website" mengangkat permasalahan mengenai pentingnya pemilihan smartphone dalam pemenuhan kebutuhan sehari-hari dan tantangan dalam memilih smartphone yang tepat menggunakan penggunaan metode SAW dan metode WP. Tujuan penelitian ini membuat Sistem Pemilihan Smartphone dengan penerapan metode Simple Additive Weighting (SAW) dan Weighted Product (WP) berbasis website. Manfaatnya untuk memberikan rekomendasi alternatif smartphone terbaik yang lebih akurat kepada pengguna dengan kombinasi metode SAW untuk normalisasi data dan metode WP untuk perbaikan bobot dan perangkingan. Penelitian ini memiliki keunggulan dari hasil yang didapatkan yaitu pengujian sistem menggunakan metode blackbox menunjukkan tingkat akurasi 100% artinya, hasil perhitungan 25 alternatif pada sistem sama dengan perhitungan manual di excel. Selain itu, hasil kombinasi dua metode tersebut menghasilkan tingkat akurasi 100% dalam memberikan rekomendasi smartphone kepada pengguna.

Penelitian oleh Muhamad Burhanudin, Satria Putra Laksmana, Diva Ikbar Rauf, Damar Wicaksono, Perani Rosyani berjudul "Perbandingan Metode SAW, WP dan TOPSIS dalam Sistem Penunjang Keputusan Pemilihan Smartphone Android Bekas" pada tahun 2023 membahas mengenai bagaimana cara yang objektif dan akurat dalam memilih

smartphone bekas dengan penerapan metode Simple Additive Weighting (SAW), Weighting Product (WP) dan Technique for Order of Preference by Similarity to Ideal Solution (Topsis). Hasil dari pembahasan itulah manfaat penelitian ini dapat diambil mengenai keobjektivitasan dan keakuratan dalam rekomendasi smartphone bekas, sedangkan tujuan diadakannya penelitian ini untuk memberikan keputusan terbaik dalam pembelian smartphone bekas kepada pengguna. Penelitian ini sekaligus memberikan wawasan dan keikutsertaan dalam kontribusi pembahasan mengenai smartphone bekas menggunakan perbandingan efektivitas tiga metode yaitu SAW, WP dan Topsis. Hasil perhitungan yang didapat dengan data dari responden sebagai pendekatan dalam penentuan kriteria yang tepat untuk smartphone bekas, menunjukkan alternatif terbaik yang sama yaitu pada A2 (Samsung tipe Galaxy A04). Hasil urutan perengkingan dari ketiga metode tersebut pun tidak jauh beda untuk empat alternatif yang disediakan. Namun, hasil penelitian ini tidak seharusnya mutlak menjadi keputusan yang harus diambil pengguna dikarenakan hasil perhitungan masih mengacu pada pembobotan kriteria yang sifatnya kemungkinan subjektif dan tidak relevan untuk pengguna.

1 BAB III

ANALISA DAN DESAIN SISTEM

A. Analisa Sistem

Analisa sistem merupakan tahapan berisi mengenai segala kebutuhan yang diperlukan sistem meliputi analisa sistem yang akan dikembangkan beserta kebutuhan penggunanya. Berikut beberapa analisa yang akan dilakukan:

1. Analisa Sistem Lama

Analisa ini dilakukan dengan tujuan mendapatkan gambaran sistem yang akan dibuat, meliputi alur sistem, data yang dibutuhkan serta menganalisis hal apa saja yang perlu diperbaiki dari sistem lama. Dibutuhkan nya pihak terkait dalam analisis sistem lama ini, guna mendapatkan keputusan yang tepat terkait perbaikan tersebutPada sistem lama dalam penentuan perbandingan *smartphone* pada toko penjualan *smartphone* dengan cara manual tanpa menggunakan konsep perhitungan dan pembobotan yang tepat dari metode manapun. Perekomendasian hanya berdasarkan pengetahuan admin toko *smartphone* saja.

32

Analisa Sistem yang Diusulkan

Analisa pada tahap ini dilakukan guna untuk mengembangkan sistem yang sudah ada dimana lebih spesifik dalam melakukan perbandingan antar *smartphone* dengan data yang lebih lengkap dan perhitungan yang jelas. Gambaran umum tentang sistem yang dibuat sebagai berikut:

a. Analisa Kebutuhan Fungsi

Sistem rekomendasi *smartphone* menggunakan metode SAW dan *profile matching* dibuat dengan tujuan mempermudah masyarakat awam dalam mengenali *smartphone* terbaik dari banyak nya data

dengan kriteria yang tersedia. Sistem ini juga melakukan perbandingaan dari hasil perhitungan dari kedua metode tersebut.

b. Analisa Kebutuhan Data

Sistem melakukan rekomendasi *smartphone* dengan diperlukannya beberapa kriteria yang ditentukan guna menjadi patokan dalam perhitungan kedua metode tersebut.

i. Data Input

Kebutuhan data input pada sistem rekomendasi *smartphone* sebagai berikut:

Tabel 3.1 Data Input

Vari	Variabel Dependen								
1.	Merk								
2.	Resolusi Kamera								
3.	RAM								
4.	Ukuran Layar								
5.	Kapasitas Bateray								
6.	ROM								
7.	Android Version								
8.	Jenis Layar								
9.	Harga								
	ibel Independen								
10.	Merk smartphone								

ii. Gambaran Proses

Dalam sistem rekomendasi *smartphone* proses pertama yaitu memasukkan data *smartphone* adalah proses pertama yang dilakukan. Data *smartphone* berupa merk dan 8 spesifikasi yang dijadikan kriteria dalam perhitungan seperti yang tertera pada tabel 2.1 data input. Jika data berhasil dimasukkan maka selanjutnya, data tampil pada halaman perhitungan sehingga dapat dipilih sebagai alternatif perhitungan. Masuk kedalam halaman perhitungan pengguna memilih dan memasukkan alternatif dari data yang telah di *upload* sehingga pada halaman

perhitungan SAW dan halaman perhitungan *Profile Matching* secara otomatis melakukan tahapan perhitungan sesuai dengan metode nya masing-masing. Proses terakhir muncul hasil akhir di masing-masing halaman perhitungan berupa total nilai dan perangkingan setiap alternatif. Adapun tahapan dalam prosesnya sebagai berikut :

1. Input Data

Pada tahap ini user diminta untuk input data sesuai dengan tabel 2.1 data input bagian variabel dependen. Data tersebut akan digunakan sebagai patokan dalam perhitungan menentukan hasil *smartphone* terbaik.

Tabel 3.2 Contoh Sampel Data Smartphone

No	Merk	Resolusi	RAM	Ukuran	Kapasitas	ROM	Android	Jenis	Harga
	WICIK	Kamera	I I I I I I I I I I I I I I I I I I I	Lavar	Bateray	KOM	Version	Layar	TIMI gu
1.	Oppo								
	Reno6			6.43		128			
	5G	64 MP	8 GB	Inchi	4300 mAh	GB	11	AMOLED	2.499.000
2.	Oppo			C 42		120			
	Reno 7 Z	(4.) m	0 CD	6.43	4500 41	128	1.0	AMOLED	2 220 000
_	5G	64 MP	8 GB	Inchi	4500 mAh	GB	12	AMOLED	2.239.000
3.	Oppo Reno 8			6.7		256			
	Pro 8	50 MP	8 GB	Inchi	4500 mAh	GB	12	AMOLED	2.399.000
4.	Oppo	50 WII	оов	Hichi	4300 IIIAII	ОБ	12	AMOLED	2.399.000
₹.	Reno 8T			6.7		128			
	5G	108 MP	8 GB	Inchi	4800 mAh	GB	13	AMOLED	3.250.000
5.	Samsung								
-	Galaxy			6.7		128		SUPER	
	A70	32 MP	6 GB	Inchi	4500 mAh	GB	9.0	AMOLED	1.594.999
6.	Samsung					120			
	Galaxy			6.7		128			
	A80	48 MP	8 GB	Inchi	3700 mAh	GB	9.0	AMOLED	1.300.000
7.	Vivo			6.78		256			
	V27	50 MP	8 GB	Inchi	4600 mAh	GB	13	AMOLED	2.500.000
8.	Vivo X		12	6.53		256			
	Fold+	50 MP	GB	Inchi	4730 mAh	GB	12	AMOLED	2.350.000
9.	Xiaomi								
	Redmi			6.67		64			50
	Note 10	64 MD	6 CD		5020 Al-		11	AMOLED	58
10	Pro	64 MP	6 GB	Inchi	5020 mAh	GB	11	AMOLED	2.799.000
10.	Xiaomi Redmi								
	Note 9			6.67		128			
	Pro	108 MP	6 GB	Inchi	4820 mAh	GB	10	LCD	2.849.000

(Sumber: Kaggle, upload by: Hypopossum)

Tabel 2.2 merupakan data smartphone yang saya ambil dari sumber https://www.kaggle.com. Data smartphone berisi 300 lebih data yang dirangkum sejak tahun 2018 sampai tahun 2022, namun saya hanya mengambil 10 data untuk dijadikan simulasi perhitungan.

Data pada tabel 2.2 merupakan data yang akan diproses dengan menggunakan perhitungan metode SAW dan metode *profile matching*. Dimana, perhitungan tersebut diproses berdasarkan kriteria kamera (C1), RAM (C2), Ukuran Layar (C3), Kapasitas Baterai (C4), ROM (C5), Android *Version* (C6), Jenis Layar (C7), Harga (C8). Setiap kriteria mempunyai bobot sebagai aspek penilaian untuk proses perhitungannya baik dalam metode SAW ataupun *profile matching*.

Rekomendasi menggunakan perhitungan metode SAW
 Metode SAW ini perhitungannya melalui 3 tahapan yang pertama tahap matriks yang didapat dari bobot kriteria terhadap rating kecocokan pada tiap alternatif.

Tabel 3.2 Matriks X

	18							
Merk	C1	C2	C3	C4	C5	C6	C7	C8
Oppo	5	5	3	2	4	3	4	3
Reno6								
5G								
Oppo	5	5	3	2	4	4	4	3
Reno 7 Z								
5G								
Oppo	4	5	4	2	5	4	4	3
Reno 8								
Pro								
Oppo	5	5	4	4	4	5	4	2
Reno 8T								
5G								
Samsung	3	4	4	2	4	2	4	4
Galaxy								
A70								

Samsung Galaxy A80	3	5	4	2	4	2	4	4
Vivo V27	4	5	4	2	5	5	4	3
Vivo X Fold+	4	5	4	2	5	4	4	3
Xiaomi Redmi Note 10 Pro	5	4	4	5	3	3	4	3
Xiaomi Redmi Note 9 Pro	5	4	4	4	4	3	1	3

Selanjutnya, dilakukan normalisasi matriks dengan menormalisasikan hasil dari matriks \mathbf{x} dengan pengelompokkan kriteria benefit dan kriteria cost.

Tabel 3.3 Normalisasi Matriks

	38							
Merk	C1	C2	C3	C4	C5	C6	C7	C8
Oppo Reno6 5G	1	1	0.75	0.4	0.8	0.6	1	0.67
Oppo Reno7 Z 5G	1	1	0.75	0.4	0.8	0.8	1	0.67
Oppo Reno8 Pro	0.8	1	1	0.4	1	0.8	1	0.67
Oppo Reno8 T 5G	1	1	1	0.8	0.8	1	1	1
Samsung Galaxy A70	0.6	0.8	1	0.4	0.8	0.4	1	0.5
Samsung Galaxy A80	0.6	1	1	0.4	0.8	0.4	1	0.5
vivo V27	0.8	1	1	0.4	1	1	1	0.67
vivo X Fold+	0.8	1	1	0.4	1	0.8	1	0.67
Xiaomi Redmi Note 10 Pro	1	0.8	1	1	0.6	0.6	1	0.67
Xiaomi Redmi Note 9 Pro 5G	1	0.8	1	0.8	0.8	0.6	0.25	0.67

Tahap terakhir perhitungan nilai akhir preferensi dengan mengalikan hasil ternormalisasi pada tabel dengan nilai bobot kriteria.

Tabel 3.4 Nilai Akhir dan Peringkat SAW

Merk	Nilai Akhir	Peringkat
Oppo Reno6 5G	0.783	8
Oppo Reno7 Z 5G	0.798	6
Oppo Reno8 Pro	0.83	4
Oppo Reno8 T 5G	0.95	1
Samsung Galaxy A70	0.69	10
Samsung Galaxy A80	0.72	9
vivo V27	0.845	2
30 o X Fold+	0.83	5
Xiaomi Redmi Note 10 Pro	0.84	3
Xiaomi Redmi Note 9 Pro 5G	0.784	7

Hasil perhitungan nilai akhir pada tabel 3.4 selanjutnya dilakukan pemeringkatan yang muncul pada kolom ketiga.

3. Rekomendasi menggunakan perhitungan metode *profile* matching

Metode *profile matching* ini perhitungannya melalui 3 tahapan yang pertama tahap pemetaan nilai Gap, konversi nilai GAP dan perhitungan nilai akhir beserta perangkingannya.

Tabel 3.5 Pemetaan GAP

	33							
Merk	C1	C2	C3	C4	C5	C6	C7	C8
Oppo	0	0	-1	-3	-1	-2	0	-1
Reno6 5G								
Oppo	0	0	-1	-3	-1	-1	0	-1
Reno7 Z								
5G								
Oppo	-1	0	0	-3	0	-1	0	-1
Reno8								
Pro								

Oppo Reno8 T 5G	0	0	0	-1	-1	0	0	-2
Samsung Galaxy A70	-2	-1	0	-3	-1	-3	0	0
Samsung Galaxy A80	-2	0	0	-3	-1	-3	0	0
vivo V27	-1	0	0	-3	0	0	0	-1
vivo X	-1	0	0	-3	0	-1	0	-1
Xiaomi Redmi Note 10 Pro	0	-1	0	0	-2	-2	0	-1
Xiaomi Redmi Note 9 Pro 5G	0	-1	0	-1	-1	-2	-3	-1

Hasil pada tabel 3.5 merupakan proses pengurangan dari bobot asli alternatif dengan profil kriteria alternatif.

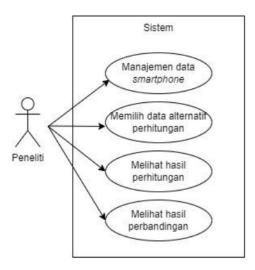
Tabel 3.6 Konversi GAP

	18							
Merk	C1	C2	C3	C4	C5	C6	C7	C8
Oppo Reno6 5G	5	5	4	2	4	3	5	4
Oppo Reno7 Z 5G	5	5	4	2	4	4	5	4
Oppo Reno8 Pro	4	5	5	2	5	4	5	4
Oppo Reno8 T 5G	5	5	5	4	4	5	5	3
Samsung Galaxy A70	3	4	5	2	4	2	5	5
Samsung Galaxy A80	3	5	5	2	4	2	5	5
vivo V27	4	5	5	2	5	5	5	4
vivo X Fold+	4	5	5	2	5	4	5	4
Xiaomi Redmi Note 10 Pro	5	4	5	5	3	3	5	4

64								
Xiaomi	5	4	5	4	4	3	2	4
Redmi				_				
Note 9								
Pro 5G								

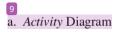
Tabel 3.6 telah dikonversi sesuai dengan skala prioritas yang telah disesuaikan dengan aturan perhitungan metode.

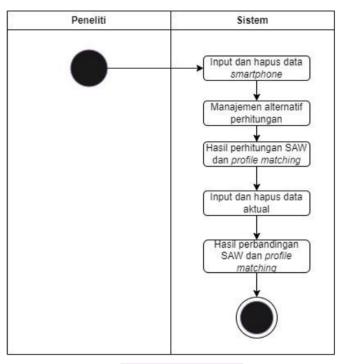
Tabel 3.7 Nilai Akhir dan Peringkat Profile Matching


Merk	Nilai Akhir	Peringkat		
Oppo Reno6 5G	449.333	7		
Oppo Reno7 Z 5G	4.36	6		
Oppo Reno8 Pro	425.333	4		
Oppo Reno8 T 5G	4.24	1		
Samsung Galaxy A70	4.24	10		
Samsung Galaxy A80	410.667	8		
vivo V27	398.667	2		
30 o X Fold+	386.667	5		
Xiaomi Redmi Note 10 Pro	385.333	3		
Xiaomi Redmi Note 9 Pro 5G	374.667	9		

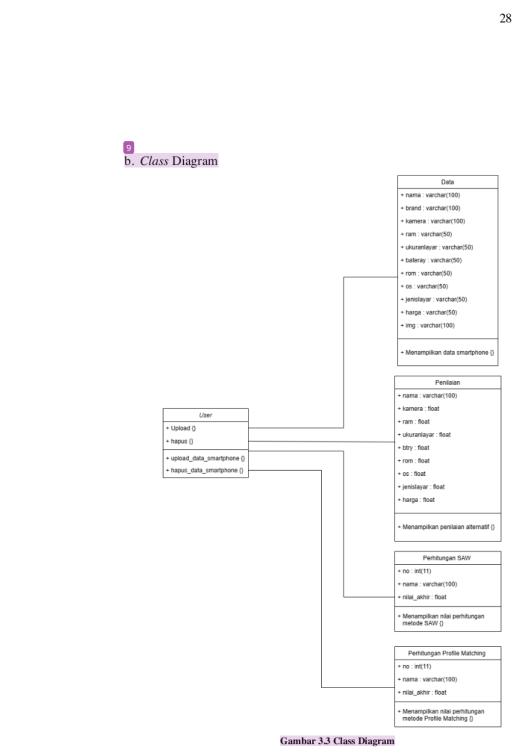
14

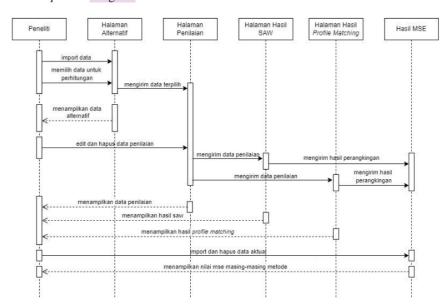
Tahap terakhir perhitungan nilai akhir dengan melakukan perhitungan nilai *core factor* dikalikan dengan nilai 0.6 dan *secondary factor* dengan nilai 0.4. Hasil perkalian tersebut selanjutnya dilakukan penjumlahan seluruh jumlah hasil kriteria dalam satu alternatif yang terlihat pada tabel.. kolom kedua. Hasil perangkingan didapat berdasarkan nilai akhir yang tertera.


B. Desain Arsitektur


a. Use Case Diagram

Gambar 3.1 Use Case Diagram


Pada Gambar 3.1 merupakan use case diagram dengan akses dari user itu sendiri. Peneliti dapat memiliki akses secara langsung kepada sistem untuk update, hapus dan melihat data smartphone pada halaman awal. Selanjutnya, pada halaman penilaian user dapat memilih data dari data smartphone pada halaman awal untuk dimasukkan sebagai alternatif perhitungan. Peneliti dapat melihat hasil perhitungan secara otomatis pada halaman perhitungan metode SAW dan halaman perhitungan metode *Profile Matching* dari alternatif yang telah dimasukkan.


Gambar 3.2 Activity Diagram

Pada Gambar 3.2 Activity Diagram menggambarkan bahwa peneliti dapat melakukan akses upload, update dan hapus data pada halaman awal sistem selanjutnya mempunyai akses dalam manajemen data alternatif penilaian meliputi input dan hapus alternatif. Pada halaman perhitungan SAW dan *Profile Matching* user dapat melihat hasil perhitungannya pada sistem.

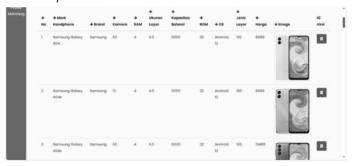
Pada Gambar 3.3 Class Diagram pada penelitian ini memiliki 5 kelas yaitu user, data, penilaian, perhitungan SAW dan perhitungan *Profile Matching*. Dimana, kelas user mempunyai semua relasi dari kelas yang ada. Kelas user memiliki method atau function untuk upload dan hapus data pada kelas data, penilaian, perhitungan SAW dan perhitungan *Profile Matching*. Sedangkan kelas data pada user memiliki kegunaan untuk menampilkan data *smartphone*, kelas penilaian untuk menampilkan penilaian alternatif, kelas perhitungan SAW dan *Profile Matching* untuk menampilkan hasil perhitungan kedua metode itu sendiri. Setiap kelas data, penilaian, perhitungan SAW dan *Profile Matching* memiliki atribut masing-masing sesuai kebutuhan data nya.

c. Sequance Diagram

Gambar 3.4 Sequance Diagram

Pada Gambar 3.4 ada lima objek dalam sequence diagram yaitu user, halaman alternatif, halaman penilaian, halaman perhitungan SAW dan halaman perhitungan Profile Matching. Objek user membuka aplikasi selanjutnya melakukan aksi upload data smartphone pada halaman alternatif. Pada halaman alternatif melakukan aksi mengirim data smartphone ke halaman penilaian. Selanjutnya, user melakukan input data smartphone untuk alternatif perhitungan ke halaman penilaian, lalu diteruskan oleh halaman penilaian beraksi mengirim data ke halaman perhitungan SAW dan Profile Matching untuk proses perhitungan. Dari keseluruhan proses, user dapat melihat upload data smartphone pada halaman alternatif, melihat data alternatif perhitungan pada halaman penilaian, melihat hasil perhitungan SAW dan Profile Matching pada halaman perhitungan.

C. Desain Interface


Setelah dilakukan desain sistem yang telah dijelaskan pada penjelasan diatas. Desain interface merupakan sebuah gambaran rancangan antarmuka yang berhubungan secara langsung dengan rancangan desain sistem. Ada empat menu halaman sistem diantaranya halaman awal berisi menu input data, halaman penilaian, halaman perhitungan SAW dan halaman perhitungan *Profile Matching*. Dibawah ini beberapa rancangan *interface* nya:

1. Desain Halaman Awal

Gambar 3.5 merupakan desain dari tampilan halaman awal yang berfungsi menampilkan data *smartphone* yang tersedia pada sistem secara kesuluruhan.

a. Desain Output data

Gambar 3.6 Desain Output Data Upload

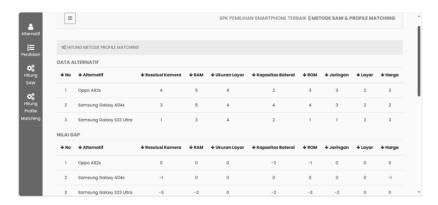
Desain *output* data merupakan tampilan yang berfungsi sebagai informasi kepada user mengenai data *smartphone* yang telah di *upload* dan tersedia pada sistem. Pada gambar 3.7 menu *Output* ini tampil dengan model tabel yang berisi informasi dari setiap merk *smartphone* mengenai kamera, ram, ukuran layar, kapasitas baterai, rom, os version, jenis layar, harga beserta fotonya. Kolom aksi sebelah pojok kanan berisi button dengan *icon trash* sebagai *delete* satu data terpilih.

2. Desain Halaman Penilaian

Halaman Penilaian berisi informasi penilaian alternatif perhitungan. Ada beberapa menu dalam halaman ini meliputi menu input alternatif dan menu tabel data.

a. Desain Output data penilaian

Gambar 3.7 Desain Data Penilaian


Gambar 3.8 merupakan tampilan dari halaman penilaian berupa tabel data berisi data alternatif perhitungan yang telah diinputkan pada desain input data penilaian. Tabel data penilaian mempunyai sebelas kolom, salah satunya pada kolom aksi berisi button dengan icon x yang sebagai tombol hapus satu data penilaian yang dipilih.

3. Desain Halaman Perhitungan SAW

24 Gambar 3.9 Desain Hasil Perhitungan SAW

Pada gambar 3.9 menunjukkan tampilan desain dari halaman perhitungan SAW. Halaman ini berisi tiga tabel dengan hasil perhitungan menggunakan metode SAW. Tabel pertama, untuk hasil tahapan matrix dengan sepuluh kolom, tabel kedua untuk hasil tahapan normalisasi dengan jumlah kolom yang sama dan tabel ketiga untuk hasil tahapan nilai akhir dengan tiga kolom.

3. Halaman Perhitungan *Profile Matching*

Gambar 3.10 Desain Hasil Perhitungan Profile Matching

Gambar 3.10 merupakan desain dari tampilan halaman hasil perhitungan *Profile Matching*. Dimana, terdapat tampilan lima tabel yang mendefinisikan hasil tahapan perhitungan *Profile Matching* yaitu tabel bobot data alternatif, tabel nilai GAP, tabel konversi GAP, tabel perhitungan NCF & NSF dan tabel nilai akhir.

1 BAB IV

IMPLEMENTASI DAN HASIL

A. Implementasi Lembar Kerja

Pada tahap ini memberikan penjelasan mengenai lembar kerja yang bekerja pada sistem penelitian ini berjumlah 4 yaitu :

1. Form Data

Form data berisi data keseluruhan yang ditampilkan pada halaman awal sistem. Data ini yang akan dipilih dan ditambahkan agar masuk kedalam lembar penilaian sehingga diproses untuk perhitungan metode SAW dan *profile matching*.

2. Lembar Penilaian

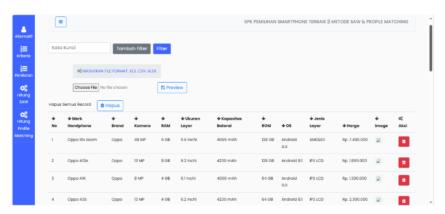
Lembar ini menampilkan alternatif terpilih yang dijadikan perhitungan. Alternatif tampil berupa merk *smartphone* dengan bobot dari setiap kriteria yang telah diprogram menjadi sebuah bobot sesuai yang telah ditentukan.

3. Proses Perhitungan

Ada 2 hasil dari masing-masing metode SAW dan *profile matching*. Proses perhitungan memunculkan hasil dari setiap alternatif mengikuti dengan tahapan perhitungan masing-masing metode sampai ke tahap akhir perngkingan.

4. Hasil Perbandingan

Hasil perbandingan muncul ketika user memasukkan data aktual dari hasil perangkingan admin secara langsung. Hasil dapat muncul membutuhkan data perangkingan dari kedua metodebeserta data aktualnya. Pada sistem memunculkan nilai Mean Squared Error (MSE), nilai terkecil merupakan metode terbaik terpilih.


B. Keterkaitan Lembar Kerja

Keterkaitan lembar kerja menjelaskan hubungan antar lembar kerja yang telah disebutkan. Form input pada halaman alternatif berguna untuk *import* data yang akan menjadi alternatif perhitungan dalam proses perhitungan pada lembar kerja point ke 3. Sebelumnya data alternatif akan dipilih terlebih dahulu lalu tampil pada lembar penilaian. Hasil perbandingan dapat berjalan ketika proses perhitungan berhasil dan selesai.

C. Implementasi Program

Implementasi program merupakan hasil dari Analisa dan desain sistem yang telah dirancang pada bab sebelumnya.

1. Halaman Alternatif

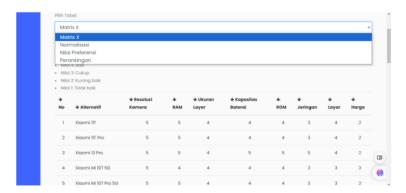
Gambar 4.1 Halaman Alternatif

Tampilan halaman awal yaitu halaman alternatif menampilkan data *smartphone* yang tersedia pada sistem secara kesuluruhan, dimana fungsi tersebut dijalankan melalui menu input data beserta *output* data *Smartphone* menggunakan import excel.

2. Tampilan Preview

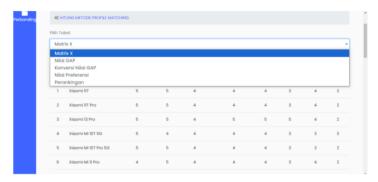
Preview Data	a								
Nama	Brand Kamer	a RAM Ukuran Laya	Bateray	ROM	os	Jenis Layar		Harga	Image
Oppo Find X2 Lite	Oppo 48 MP	8 GB 6.4 Inchi	4025 mAh	256 GB	Android 10	AMOLED			https://fdn2.gamarena.com/vv/bigpic/oppo-a12e.jpg
Oppo Ace2		8 GB 6.55 Inchi			Android 10				https://fdn2.gamarena.com/vv/bigpic/oppo-ace2.jpg
Oppo A12e	Oppo 13 MP	8 GB 6.2 Inchi	4230 mAh	128 GB	Android 8.1	IPS LCD	Rp.	1.899.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-a58.jpg
Oppo Reno 3	Oppo 48 MP	8 GB 6.4 Inchi	4025 mAh	256 GB	Android 10	AMOLED	Rp	4.999.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-a56s.jpg
Oppo Find X2 Pro	Oppo 48 MP				Android 10				https://fdn2.gamarena.com/vv/bigpic/oppo-find-n2-flip.jpg
Oppo Find X2	Oppo 48 MP	12 GB 6.7 Inchi	4200 mAh	256 GB	Android 10	AMOLED	Rp.	11.900.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-find-n2-5g.jpg
Oppo Reno 3 Pro	Oppo 64 MP	6 GB 6.4 Inchi	4025 mAh	128 GB	Android 10	Super Amoleo	iRp.	8.900.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-a58x.jpg
Oppo Reno 3 Pro 5	G Oppo 48 MP	16 GB 6.5 Inchi	4025 mAh	256 GB	Android 10	AMOLED	Rp.	6.999.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-reno9-pro-plus.jpg
Oppo Reno 3 5G	Oppo 64 MP	16 GB 6.4 Inchi	4025 mAh	256 GB	Android 10	AMOLED			https://fdn2.gsmarena.com/vv/bigpic/oppo-reno9-pro.jpg
Oppo A91	Oppo 48 MP	8 GB 6.4 Inchi	4025 mAh	256 GB	Android 9.0	AMOLED	Rp.	2.500.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-reno9.jpg
Oppo AS	Oppo 12 MP	8 GB 6.5 Inchi	4230 mAh	128 GB	Android 9.0	IPS LCD	Rp.	1.800.000	https://fdn2.gamarena.com/vv/bigpic/oppo-a1-pro.jpg
Oppo A5 2020	Oppo 12 MP	6 GB 6.5 Inchi	5000 mAh	128 GB	Android 9.0	IPS LCD			https://fdn2.gamarena.com/vv/bigpic/oppo-a58.jpg
Oppo A9 2020	Oppo 48 MP	3 GB 6.5 Inchi	5000 mAh	64 GB	Android 9.0	IPS LCD			https://fdn2.gsmarena.com/vv/bigpic/oppo-a17k.jpg
Oppo Reno 2	Oppo 48 MP	8 GB 6.5 Inchi	4000 mAh	128 QB	Android 9.0	AMOLED	Rp.	4.500,000	https://fdn2.gsmarena.com/vv/bigpic/oppo-a77s.jpg
Oppo A1K	Oppo 8 MP	4 GB 6.1 Inchi	4000 mAh	64 GB	Android 9.0	IPS LCD	Rp.	1.300.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-a1k.jpg
Орро 10х гоот	Oppo 48 MP	6 GB 6.6 Inchi	4065 mAh	128 GB	Android 9.0	AMOLED			https://fdn2.gsmarena.com/vv/bigpic/oppo-k10xjpg
Oppo F11	Oppo 48 MP	4 GB 6.53 Inchi	4020 mAh	64 GB	Android 9.0	IPS LCD	Rp.	4.700.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-a57-4g.jpg
Oppo F11 Pro	Oppo 48 MP	4 GB 6.53 Inchi	4000 mAh	64 GB	Android 9.0	IPS LCD	Rp.	6.999.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-a57s.jpg
Oppo A7	Oppo 13 MP	8 GB 6.2 Inchi	4230 mAh	256 GB	Android 8.1	IPS LCD	Rp.	2.499.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-reno8-4g.jpg
Oppo F9 Pro	Oppo 16 MP	8 GB 6.3 Inchi	3500 mAh	128 GB	Android 8.1	IPS LCD	Rp.	2.535.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-reno8z-5g.jpg
Oppo A3S	Oppo 13 MP	4 GB 6.2 Inchi	4230 mAh	64 GB	Android 8.1	IPS LCD	Rp.	2.300.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-a3s.jpg
Oppo A5	Oppo 13 MP	8 GB 6.2 Inchi	4230 mAh	256 GB	Android 8.1	IPS LCD	Rp.	2.600.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-reno8-pro.jpg
Oppo F7	Oppo 16 MP	8 GB 6.23 Inchi	3400 mAh	128 GB	Android 8.1	IPS LCD	Rp.	4.000.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-reno8.jpg
Oppo A71 2018	Oppo 13 MP	8 GB 5.2 Inchi	3000 mAh	128 GB	Android 7.1	IPS LCD	Rp.	1.900.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-reno-8-lite.jpg
Oppo Find X5 Pro	Oppo 64 MP	8 GB 6.7 Inchi	4035 mAh	256 GB	Android 12	IPS LCD	Rp.	5.500.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-find-x5-pro.jpg
Oppo Find X2 Neo	Oppo 64 MP	12 GB 6.5 Inchi	4230 mAh	256 GB	Android 10	AMOLED	Rp.	8.000.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-find-x2-neo.jpg
Oppo A92s	Oppo 64 MP	6 GB 6.57 Inchi	4045 mAh	128 GB	Android 10	IPS LCD	Rp.	4.800.000	https://fdn2.gsmarena.com/vv/bigpic/oppo-a92s.jpg
Oppo Reno4 Pro 50	Oppo 48 MP	8 GB 6.55 Inchi	4230 mAh	128 GB	Android 10	AMOLED	Rp.	8.700.000	https://fdn2.gamarena.com/vv/bigpic/oppo-reno4-pro-5g.jpg
Oppo Reno4 5G	Oppo 13 MP	8 GB 6.43 Inchi	3500 mAh	128 GB	Android 10	AMOLED	Rp.	6.654.000	https://fdn2.gamarena.com/vv/bigpic/oppo-reno4-5g.jpg
Save Data Cancel									

Gambar 4.2 Tampilan Preview


Tampilan preview muncul saat fungsi import excel digunakan dan menekan tombol preview. Halaman ini berguna untuk menampilkan data pada halaman lain sebelum di konfirmasi untuk masuk kedalam database data yang dituju.

3. Halaman Penilaian

Halaman penilaian merupakan halaman yang berfungsi untuk menampilkan alternatif yang akan menjadi penilaian dalam perhitungan saw dan profile matching, baik melalui excel ataupun input manual.


4. Halaman Hasil Metode SAW

Gambar 4.4 Halaman Hasil SAW

Halaman ini memberikan tampilan berupa hasil dari setiap tahapan metode SAW mulai dari tahap normalisasi sampai ke tahap perankingan.

5. Halaman Hasil Metode Profile Matching

Gambar 4.5 Halaman Hasil Profile Matching

Halaman ini memberikan tampilan berupa hasil dari setiap tahapan metode *profile matching* mulai dari tahap normalisasi sampai ke tahap perankingan.

| Principles | Pri

6. Halaman Perbandingan

Gambar 4.6 Halaman Perbandingan

Halaman ini menampilkan hasil analisis perbandingan dari kedua metode menggunakan data aktual berupa perangkingan alternatif sumber admin legowo cell. Pada perhitungannya menggunakan evaluasi hasil MSE, dimana nilai eror terkecil menunjukkan metode terbaik yang terpilih untuk kasus ini.

D. Pengujian Sistem

Tahap pengujian sistem ini bertujuan untuk menganalisa apakah sistem sudah berjalan sesuai dengan gambaran desain dan sesuai fungsinya. Berikut tahapan dan penjelasan dalam pengujian sistem ini:

1. Pengujian Fungsional

Pengujian sistem ini dilakukan dengan *blackbox* dan *whitebox testing* dimana bertujuan agar mengetahui apakah sistem berjalan sesuai yang diharapkan atau tidak.

a. Pengujian Blackbox

Blackbox testing dilakukan oleh programmer itu sendiri sedangkan pada whitebox testing menggunakan beberapa struktur kode dalam pengujian sistemnya.

37 Tabel 4.1 Pengujian Halaman Alternatif

Data Masukan	Yang Diharapkan	Pengamat	Kesimpulan
Klik tombol	Jika klik tombol	Tombol	Diterima
Alternatif pada	alternatif pada	alternatif	
sidebar	sidebar, maka akan	berfungsi	
	mengarah	dengan baik	
	langsung ke		
	halaman utama		
	yang berisi		
	alternatif		
	smartphone		
Klik tombol	Data pada tabel	Tombol	Diterima
filter untuk	akan menampilkan	Filter	
melakukan	smartphone sesuai	berfungsi	
pencarian	dengan kriteria	dengan baik	
berdasar	yang dicari		
kriteria yang			
dibutuhkan			
Klik tombol	Bertambahnya	Tombol	Diterima
tambah filter	pencarian filter	tambah filter	
	sesuai dengan	berfungsi	
	kebutuhan kriteria	dengan baik	
	yang dicari		
Klik tombol	Semua data	Tombol	Diterima
hapus pada	alternatif pada	fungsi hapus	
fungsi hapus	database terhapus,	semua	
semua record	tabel tidak	record	
	menampilkan data	berfungsi	
*****	apapun	dengan baik	
Klik tombol	Data terpilih akan	Tombol	Diterima
delete pada	terhapus dari	delete	
kolom aksi	database dan	berfungsi	
tabel dengan	otomatis hilang	dengan baik	
simbol trash	pada tabel		
	alternatif		

Tabel 4.2 Pengujian Halaman Penilaian

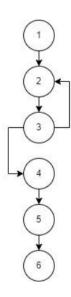
Data Masukan	Yang Diharapkan	Pengamat	Kesimpulan
Klik tombol	Terbukanya	Tombol	Diterima
hasil SAW	halaman yang	hasil SAW	
	berisi hasil	berjalan	
	perhitungan	dengan baik	
	metode SAW		
Klik tombol	Terbukanya	Tombol	Diterima
hasil <i>profile</i>	halaman yang	hasil profile	
matching	berisi hasil	matching	
	perhitungan	berjalan	
	metode profile	dengan baik	
	matching		
Klik tombol	Semua data	Tombol	Diterima
hapus pada	alternatif penilaian	fungsi hapus	
fungsi hapus	pada database	semua	
semua record	terhapus, tabel	record	
	tidak menampilkan	berfungsi	
	data apapun	dengan baik	
Klik tombol	Alternatif penilaian	Tombol aksi	Diterima
aksi <i>delete</i> pada	yang dipilih	delete	
tabel dengan	terhapus pada	simbol <i>close</i>	
simbol close	database maupun	berfungsi	
	tabel penilaian	dengan baik	
	alternatif		
Klik tombol	Muncul halaman	Tombol aksi	Diterima
aksi edit pada	lain yang	edit	
tabel dengan	menampilkan	berfungsi	
simbol pen	dropdown yang	dengan baik	
	sudah berisi data		
	dari alternatif		
	penilaian terpilih		
	untuk di edit		
	perubahan data		
	dengan klik tombol		
	"simpan"		

Tabel 4.3 Halaman Perbandingan

Data Masukan	Yang Diharapkan	Pengamat	Kesimpulan
Klik tombol	Menampilkan form	Tombol	Diterima
choose file pada	data file pada	choose file	
fungsi import file	perangkat komputer	berfungsi	
excel	untuk di <i>inputkan</i>	dengan baik	
	dalam database dan		
	ditampilkan pada		
	tabel halaman		
	alternatif		
Klik tombol	Terbukanya halaman	Tombol	Diterima
preview	preview yang	preview	
	menampilkan isi dari	berfungsi	
	file data terpilih	dengan baik	
	konfirmasi pada		
	tombol "simpan"		
	untuk menyetujui		
	dan "cancel" untuk		
	membatalkan import		
	file tersebut.		
Klik tombol	Semua data aktual	Tombol	Diterima
hapus pada fungsi	pada database	fungsi hapus	
hapus semua data	terhapus, tabel tidak	semua data	
aktual	menampilkan data	berfungsi	
	apapun.	dengan baik	
Klik tombol	Muncul hasil	Tombol	Diterima
hitung MSE	perhitungan MSE	hitung MSE	
	dari 2 metode	berfungsi	

b. Pengujian whitebox testing

Pengujian *whitebox* diperlukan dalam mengetahui jalur logika sistem, memastikan bahwa berjalannya sistem telah sesuai dengan desain dan semua skenario yang ditentukan.


1. Proses penilaian dan perhitungan

Proses ini dapat dilakukan setelah proses input data pada halaman alternatif telah berhasil. Data yang masuk kedalam halaman alternatif ini, akan menjadi bahan untuk masuk kedalam proses penilaian dan secara otomatis sistem melakukan proses perhitungan.

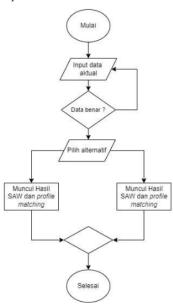
Gambar 4.7 Flowchart Proses Penilaian dan Perhitungan

Hasil pengujian menunjukkan proses pertama yaitu pemilihan alternatif untuk ditambahkan menjadi alternatif penilaian sesuai logika. Ketika data pada halaman alternatif dipilih dan ditambahkan ke penilaian, maka data secara otomatis muncul pada halaman penilaian berupa merk dan bobot dari setiap kriteria nya. Untuk selanjutnya diproses pada perhitungan dua metode.

Gambar 4.8 Flowchart Node Proses Penilaian dan Perhitungan

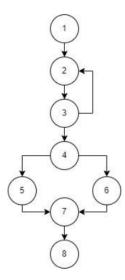
Gambar 4.8 menggambarkan Cyclomatic flowchart node proses penilaian dan perhitungan yang memiliki 6 (N)node dan 6 (E)edge. Berikut untuk Path nya: V(G) = E-N+2

=6-6+2


=2

Jumlah Path sebanyak 2, dimana:

Path 1:1-2-3-4-5-6 Path 2:1-2-3-6


2. Proses Hasil Perbandingan

Proses ini dapat terjadi jika proses perhitungan selesai, karena perbandingan membutuhkan hasil dari kedua metode dan input data akual berupa *import* file excel.

Gambar 4.9 Flowchart Hasil Perbandingan

Hasil pengujian menunjukkan proses perbandingan sampai dengan muncul nilai hasil menggunakan MSE berjalan sesuai logika. Input data dengan *import* file excel, jika data benar setelah proses *preview* maka data actual akan masuk dan muncul dalam sistem setelah konfirmasi simpan data. Selanjutnya *user* melakukan proses hitung MSE, muncul dua tabel yang menunjukkan hasil perhitungan MSE dari perangkingan SAW dan *profile matching*.

Gambar 4.10 Flowchart Node Proses Perbandingan

Gambar 4.10 menggambarkan Cyclomatic flowchart node proses perbandingan yang memiliki 8 (N)node dan 9 (E)edge. Berikut untuk Path nya: V(G) = E-N+2

=9-8+2

=3

Jumlah Path sebanyak 2, dimana:

Path 1: 1-2-3-4--6-7-8

Path 2: 1-2-3-5-6-7-8

Path 3: 1-2-3-8

4. Rekapitulasi Hasil Whitebox Testing

Tabel 4.4 Rekapitulasi Hasil whitebox testing

Flowchart	Cyclomatic	Independent
	Compalacity	Path
Proses penilaian	2	2
dan perhitungan		
Proses	3	3
perbandingan		
Jumlah	5	5

Hasil rekapitulasi pada tabel 4.4 menunjukkan bahwa pengujian *whitebox testing* dengan julah cyclomatic compalacity berjumlah 7, region berjumlah 7 dan independent path berjumlah 7 juga. Maka, alur logika sistem perbandingan rekomendai *smartphone* sesuai dan benar

E. Hasil

Dari 300 lebih data, peneliti melakukan pengujian dengan beberapa kasus pencarian yang menghasilkan nilai MSE berbeda beda. Hasil perhitungan data dengan spesifikasi kamera 50 MP dan 64 MP sebagai berikut :

Tabel 4.5 Hasil Pengujian pertama SAW

Nama Alternatif	Ranking Aktual	Ranking SAW	Selisih (A)	Δ^2
Oppo A54s	36	23	13	169
Oppo A55	37	29	8	64
Oppo A77s	35	15	20	400
Oppo A92	8	38	-30	900
Oppo A92s	7	30	-23	529
Oppo A95	25	21	4	16
Oppo Reno4	17	34	-17	289
Oppo Reno4 F	19	33	-14	196
Oppo Reno5 5G	3	13	-10	100
Oppo Reno6	10	19	-9	81
Oppo Reno6 Pro	9	4	5	25
Oppo Reno8 T 5G	1	1	0	0
Samsung Galaxy A04s	39	35	4	16
Samsung Galaxy A13	38	25	13	169
Samsung Galaxy A42 5G	40	26	14	196
Samsung Galaxy M30	34	40	-6	36

vivo T1 Pro	11	8	3	9
vivo V21 5G	33	18	15	225
vivo V25	27	9	18	324
vivo V27	20	5	15	225
vivo Y21t	18	17	1	1
vivo Y22	26	24	2	4
vivo Y33s	32	27	5	25
vivo Y33t	31	10	21	441
vivo Y35	28	28	0	0
vivo Y75	21	16	5	25
Xiaomi Mi 10S	4	3	1	1
Xiaomi Poco X3 Pro	16	11	5	25
Xiaomi Redmi 10 Prime	22	37	-15	225
Xiaomi Redmi 9T	30	32	-2	4
Xiaomi Redmi K40	6	14	-8	64
Xiaomi Redmi K40 Pro	5	7	-2	4
Xiaomi Redmi K40 Pro+	2	2	0	0
Xiaomi Redmi Note 10	29	36	-7	49
Xiaomi Redmi Note 10 5G	14	39	-25	625
Xiaomi Redmi Note 10	13	6	7	49
Pro				
Xiaomi Redmi Note 10S	15	20	-5	25
Xiaomi Redmi Note 12	12	22	-10	100
Xiaomi Redmi Note 9 4G	24	12	12	144

$$\sum \Delta^2$$
 (SAW) = 5844

n (SAW) = 40

Mean Squared Error (MSE) (SAW) = 146.1

Tabel 4.6 Hasil Pengujian pertama Profile Matching

	Ranking	Ranking Profile	Selisih	
Nama Alternatif	Aktual	Matching	(Δ)	Δ^2
Oppo A54s	36	18	18	324
Oppo A55	37	30	7	49
Oppo A77s	35	14	21	441
Oppo A92	8	38	-30	900
Oppo A92s	7	37	-30	900
Oppo A95	25	5	20	400
Oppo Reno4	17	31	-14	196
Oppo Reno4 F	19	33	-14	196
Oppo Reno5 5G	3	22	-19	361
Oppo Reno6	10	12	-2	4
Oppo Reno6 Pro	9	19	-10	100
Oppo Reno8 T 5G	1	1	0	0
Samsung Galaxy A04s	39	29	10	100
Samsung Galaxy A13	38	21	17	289
Samsung Galaxy A42 5G	40	16	24	576
Samsung Galaxy M30	34	40	-6	36
vivo T1 Pro	11	11	0	0

vivo V21 5G	33	13	20	400
vivo V25	27	10	17	289
vivo V27	20	2	18	324
vivo Y21t	18	9	9	81
vivo Y22	26	23	3	9
vivo Y33s	32	28	4	16
vivo Y33t	31	4	27	729
vivo Y35	28	27	1	1
vivo Y75	21	24	-3	9
Xiaomi Mi 10S	4	20	-16	256
Xiaomi Poco X3 Pro	16	15	1	1
Xiaomi Redmi 10 Prime	22	39	-17	289
Xiaomi Redmi 9T	30	26	4	16
Xiaomi Redmi K40	6	35	-29	841
Xiaomi Redmi K40 Pro	5	32	-27	729
Xiaomi Redmi K40 Pro+	2	8	-6	36
Xiaomi Redmi Note 10	29	25	4	16
Xiaomi Redmi Note 10 5G	14	34	-20	400
Xiaomi Redmi Note 10 Pro	13	3	10	100
Xiaomi Redmi Note 10S	15	7	8	64
Xiaomi Redmi Note 12	12	6	6	36
Xiaomi Redmi Note 9 4G	24	17	7	49

 $\sum \Delta^2$ (Profile Matching) = 9733

n (Profile Matching) = 40

Mean Squared Error (MSE) (Profile Matching) = 243.3

Selanjutnya, pengujian kedua menggunakan hasil perhitungan data dengan spesifikasi RAM 6 GB dan 8 GB sebagai berikut :

Tabel 4.7 Hasil Pengujian kedua SAW

Nama Alternatif	Ranking	Ranking	Selisih	Δ^2
	Aktual	SAW	(Δ)	
Oppo A92	18	21	-3	9
Oppo Reno4 Pro 5G	16	18	-2	4
Oppo Reno6 5G	14	16	-2	4
Oppo Reno6 Pro 5G	13	3	10	100
Oppo Reno7 Z 5G	12	14	-2	4
Oppo Reno8 Pro	6	6	0	0
Oppo Reno8 T 5G	1	1	0	0
Samsung Galaxy A52	15	13	2	4
Samsung Galaxy A70	21	20	1	1
Samsung Galaxy A80	20	19	1	1
vivo V27	8	4	4	16
vivo V27e	4	9	-5	25
vivo X Fold+	2	7	-5	25

vivo X Note	5	2	3	9
vivo X80	7	8	-1	1
Xiaomi Mi 10T 5G	9	10	-1	1
Xiaomi Poco X3	10	12	-2	4
Xiaomi Poco X3 NFC	11	11	0	0

$$\sum \Delta^2$$
 (SAW) = 368

$$n \text{ (SAW)} = 20$$

Mean Squared Error (MSE) (SAW) = 18.4

Tabel 4.8 Hasil Pengujian kedua Profile Matching

Nama Alternatif	Ranking	Ranking	Selisih	Δ^2
	Aktual	SAW	(Δ)	
Oppo A92	18	21	-3	9
Oppo Reno4 Pro 5G	16	17	-1	1
Oppo Reno6 5G	14	16	-2	4
Oppo Reno6 Pro 5G	13	15	-2	4
Oppo Reno7 Z 5G	12	12	0	0
Oppo Reno8 Pro	6	7	-1	1
Oppo Reno8 T 5G	1	1	0	0
Samsung Galaxy A52	15	20	-5	25
Samsung Galaxy A70	21	19	2	4
Samsung Galaxy A80	20	18	2	4
vivo V27	8	4	4	16
vivo V27e	4	2	2	4
vivo X Fold+	2	6	-4	16
vivo X Note	5	3	2	4
vivo X80	7	8	-1	1
Xiaomi Mi 10T 5G	9	9	0	0
Xiaomi Poco X3	10	10	0	0
Xiaomi Poco X3 NFC	11	11	0	0

Dengan nilai MSE yang didapat :

 $\sum \Delta^2$ (Profile Matching) = 273

 $n \ (Profile \ Matching) = 21$

Mean Squared Error (MSE) (Profile Matching) = 13.65

Untuk perhitungan data dalam pencarian spesifikasi kapasitas bateray lebih dari 5000 mAh sampai 6000 mAh

Tabel 4.9 Hasil Pengujian ketiga SAW

Nama Alternatif	Ranking Aktual	Ranking SAW	Selisih (A)	Δ^2
xiaomi 11t	3	2	1	1
xiaomi 11t pro	2	3	-1	1
xiaomi 13 pro	1	1	0	0
xiaomi mi 10t 5g	12	11	1	1
xiaomi mi 10t pro	9	7	2	4
5g .				
xiaomi mi 11 pro	8	8	0	0
xiaomi mi 11 ultra	4	4	0	0
xiaomi poco c31	33	36	-3	9
xiaomi poco c40	29	33	-4	16
xiaomi poco c50	34	34	0	0
xiaomi poco c55	18	18	0	0
xiaomi poco m4 5g	23	21	2	4
xiaomi poco m4 pro 5g	11	14	-3	9
xiaomi poco x3	14	12	2	4
xiaomi poco x3 nfc	13	13	0	0
xiaomi poco x3 pro	21	17	4	16
xiaomi poco x5	7	15	-8	64
xiaomi poco x5 pro	6	6	0	0
xiaomi redmi 10	36	29	7	49
xiaomi redmi 10 prime	24	27	-3	9
xiaomi redmi 10a	35	35	0	0
xiaomi redmi 9	31	31	0	0
xiaomi redmi 9 activ	32	32	0	0
xiaomi redmi 9a sport	37	37	0	0
xiaomi redmi 9t	27	23	4	16
xiaomi redmi note 10	15	26	-11	121
xiaomi redmi note 10 5g	20	30	-10	100
xiaomi redmi note 10 pro	17	10	7	49
xiaomi redmi note 10s	22	20	2	4
xiaomi redmi note 11	16	19	-3	9
xiaomi redmi note 11 pro	10	9	1	1
xiaomi redmi note 11se	25	25	0	0
xiaomi redmi note 11t pro	5	5	0	0
xiaomi redmi note 12	19	22	-3	9
xiaomi redmi note 9 4g	28	16	12	144

xiaomi redmi note	30	28	2	4
9 5g				
xiaomi redmi note	26	24	2	4
9t				
xiaomi 11t	3	2	1	1
xiaomi 11t pro	2	3	-1	1

$$\sum \Delta^2$$
 (SAW) = 648

n (SAW) = 37

Mean Squared Error (MSE) (SAW) = 17.513513513514

Tabel 4.10 Hasil Pengujian ketiga *Profile Matching*

Nama Alternatif	Ranking Aktual	Ranking Profile Matching	Selisih (A)	Δ^2
xiaomi 11t	3	6	-3	9
xiaomi 11t pro	2	8	-6	36
xiaomi 13 pro	1	1	0	0
xiaomi mi 10t 5g	12	14	-2	4
xiaomi mi 10t pro	9	18	-9	81
5g 1				
xiaomi mi 11 pro	8	13	-5	25
xiaomi mi 11 ultra	4	3	1	1
xiaomi poco c31	33	36	-3	9
xiaomi poco c40	29	33	-4	16
xiaomi poco c50	34	34	0	0
xiaomi poco c55	18	21	-3	9
xiaomi poco m4 5g	23	24	-1	1
xiaomi poco m4 pro	11	11	0	0
5g				
xiaomi poco x3	14	16	-2	4
xiaomi poco x3 nfc	13	17	-4	16
xiaomi poco x3 pro	21	20	1	1
xiaomi poco x5	7	10	-3	9
xiaomi poco x5 pro	6	4	2	4
xiaomi redmi 10	36	26	10	100
xiaomi redmi 10 prime	24	32	-8	64
xiaomi redmi 10a	35	35	0	0
xiaomi redmi 9	31	30	1	1
xiaomi redmi 9 activ	32	31	1	1
xiaomi redmi 9a sport	37	37	0	0
xiaomi redmi 9t	27	23	4	16
xiaomi redmi note 10	15	22	-7	49
xiaomi redmi note 10 5g	20	29	-9	81
xiaomi redmi note 10 pro	17	7	10	100

xiaomi redmi note 10s	22	15	7	49
xiaomi redmi note 11	16	9	7	49
xiaomi redmi note 11 pro	10	2	8	64
xiaomi redmi note 11se	25	27	-2	4
xiaomi redmi note 11t pro	5	5	0	0
xiaomi redmi note 12	19	12	7	49
xiaomi redmi note 9 4g	28	19	9	81
xiaomi redmi note 9 5g	30	25	5	25
xiaomi redmi note 9t	26	28	-2	4
xiaomi 11t	3	6	-3	9
xiaomi 11t pro	2	8	-6	36

 $\sum \Delta^2$ (Profile Matching) = 962

n (Profile Matching) = 37

Mean Squared Error (MSE) (Profile Matching) = 26

F. Evaluasi Hasil

Dari perhitungan yang telah dibahas pada subbab sebelumnya nilai MSE diperoleh dengan membutuhkan data aktual pemeringkatan yang bersumber dari Admin dan Teknisi *Smartphone* Legowo Cell.

Pada setiap kasus pencarian yang berbeda maka menghasilkan nilai MSE yang berbeda juga. Jumlah nilai MSE terkecil merupakan nilai terbaik yang akan menggambarkan metode terbaik terpilih.

Pada perhitungan pertama berdasarkan data pencarian spesifikasi kamera resolusi 50 MP dan 64 MP didapat nilai MSE dari metode SAW sebesar 146,1 dan pada *profile matching* sebesar 243,3 Menunjukkan bahwa metode SAW merupakan metode terbaik terpilih dalam pengujian kasus pertama. Selanjutnya, untuk pencarian spesifikasi berdasarkan ram 6 GB dan 8 GB menghasilkan nilai MSE pada metode SAW seebesar. 18,4 dan *profile matching* sebesar 13,65 menunjukkan bahwa metode *profile*

matching metode terbaik pada kasus pencarian tersebut. Yang terakhir perhitungan data berdasarkan spesifikasi kapasitas baterai lebih dari 5000 mAh pada merk Xiaomi menghasilkan nilai MSE pada metode SAW sebesar 17,51 dan *profile matching* sebesar 21 menunjukkan bahwa metode SAW merupakan metode terbaik.

Dari ketiga perhitungan dalam data berdasarkan spesifikasi yang berbeda beda metode SAW lebih banyak unggul disebut sebagai metode terbaik dalam perekomendasian kasus pencarian *smartphone*.

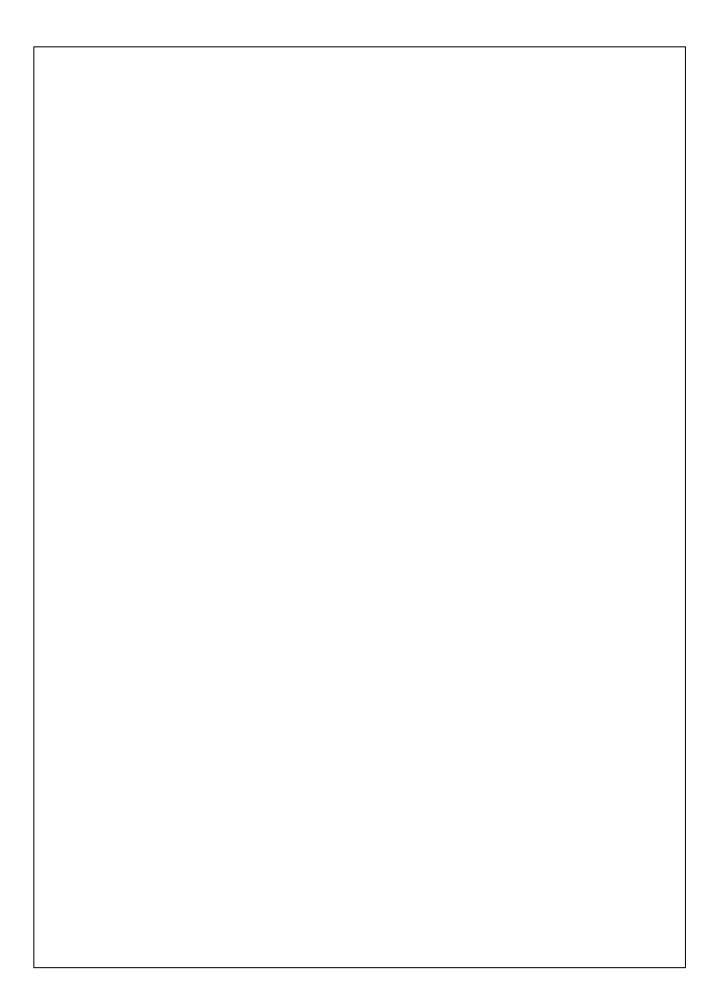
A. KESIMPULAN

Berdasarkan hasil implementasi Sistem rekomendasi *smartphone* menggunakan dua metode yaitu metode SAW dan *profile matching* selanjutnya melakukan pengujian menggunakan MSE (*Mean Squared Error*) oleh beberapa data spesifikasi berbeda-beda, maka dapat disimpulkan bahwa:

- 1. Sistem behasil berjalan sesuai dengan rancangan yang dibuat penulis menggunakan UML, dan berhasil dalam pengujian blackbox serta whitebox. Sistem ini menggunakan metode SAW dan profile matching dalam perekomendasian smartphone yang bertujuan untuk melakukan perbandingan dan menyimpulkan metode terbaik dari keduanya. Alur sistem bekerja dengan user yang memasukkan data alternatif smartphone selanjutnya diproses untuk perhitungan dari kedua metode tersebut, hasilnya dilakukan analisis evaluasi menggunakan MSE dengan data aktual referensi pengguna. Hasil perhitungan metode SAW dan profile matching beserta nilai eror dari masing-masing metode menggunakan MSE dapat dilihat secara langsung oleh pengguna dalam sistem.
- 2. Sistem rekomendasi smartphone dengan perbandingan dua metode SAW dan profile matching menggunakan 8 variabel dependen dan 1 variabel independen. Berdasarkan hasil nilai MSE yang telah dijabarkan pada subbab sebelumnya menggunakan 3 pengujian dengan data pengelompokan spesifikasi yang berbeda-beda, pengujian pertama didapat metode SAW dengan nilai 146,1 sedangkan metode profile matching bernilai 243,3. Pengujian kedua didapat metode profile matching terbaik dengan nilai 13,65 sedangkan SAW bernilai 18,4. Pengujian ketiga metode SAW kembali menjadi metode terbaik dengan

nilai 17,51 sedangkan *profile matching* bernilai 26. Dalam beberapa pengujian dapat disimpulkan bahwa metode SAW lebih unggul menjadi metode terbaik dengan nilai yang mendekati akurat dalam beberapa kasus perekomendasian *smartphone*.

B. Saran


Berdasarkan hasil penelitian yang telah berhasil diatas, penulis memiliki beberapa saran yang mungkin bisa dikembangkan ke penelitian berikutnya sebagai berikut:

- 1. Pembuatan sistem selanjutnya dapat dikembangkan dengan beberpa fitur yang lebih lengkap untuk memberikan informasi yang lebih detail mengenai produk *smartphone* yang tersedia.
- Data training diperbanyak agar lebih banyak melakukan perbandingan dengan beberapa alternatif *smartphone* dan spesifikasi tertentu
- Menambah beberapa variabel dependen sehingga variabel yang menjadi bahan perhitungan lebih beragam dan berdasarkan spesifikasi yang lebih luas terkait smartphone.

DAFTAR PUSTAKA

- Fakhrizal, A., Wahyuni, S. N., & Vijaya, R. J. (2023). SISTEM PENUNJANG KEPUTUSAN PEMILIHAN SMARTPHONE BERBASIS WEBSITE DENGAN METODE SIMPLE ADDITIVE WEIGTHING. The Indonesian Journal of Computer Science Research, 2(2), 33-42.
- Eric Agus Wicaksono, E. FAKTOR-FAKTOR YANG MEMPENGARUHI KEPERCAYAAN KONSUMEN DALAM MENGAMBIL KEPUTUSAN MEMBELI SMARTPHONE. FAKTOR-FAKTOR YANG MEMPENGARUHI KEPERCAYAAN KONSUMEN DALAM MENGAMBIL KEPUTUSAN MEMBELI SMARTPHONE.
- Firmansyah, M. K., SWANJAYA, D., & WULANNINGRUM, R. (2022). SISTEM PEMILIHAN PRODUK HANDPHONE DENGAN MENGGUNAKAN METODE MATCHING (Doctoral dissertation, Universitas Nusantara PGRI Kediri).
- Sari, L. R., Wulanningrum, R., & Swanjaya, D. (2022). Smartphone Selection Recommendation System. JTECS: Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem Dan Komputer, 2(2), 177. https://doi.org/10.32503/jtecs.v2i2.2630
- Nurinadi, H., Octariadi, B. C., & Siregar, A. C. (2022). Penerapan Metode Simple Additive Weighting (SAW) dan Weighted Produck (WP) Dalam Sistem Pendukung Keputusan Pemilihan Smartphone Berbasis Website. *Digital Intelligence*, 2(2), 109-121.
- Setiyawan, A., Putra, A. C., Saputra, O. I., & Andi, R. (2023). Sistem Penunjang Keputusan Pemilihan Smartphone Gamers Terbaik Dengan Metode Simple Additive Weighting, Weighted Product (WP) dan Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). LOGIC: Jurnal Ilmu Komputer dan Pendidikan, 1(2), 211-222.

- Krismadi, A., Lestari, A. F., Pitriyah, A., Mardangga, I. W. P. A., Astuti, M., & Saifudin, A. (2019). Pengujian Black Box berbasis Equivalence Partitions pada Aplikasi Seleksi Promosi Kenaikan Jabatan. *Jurnal Teknologi Sistem Informasi dan Aplikasi*, 2(4), 155-161.
- Praniffa, A. C., Syahri, A., Sandes, F., Fariha, U., Giansyah, Q. A., & Hamzah, M. (2023). Pengujian Sistem Informasi Parkir Berbasis Web Pada UIN SUSKA RIAU Menggunakan White Box dan Black Box Testing. *Jurnal Testing dan Implementasi Sistem Informasi*, 1(1), 1-16.
- Syahril, M. (2023). Rekomendasi Pemilihan Handphone Android Terbaik Berdasarkan Daya Beli Konsumen Menggunakan Metode Profile Matching. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), 22(2), 347-359.
- Ahlamiyah, Q., Handayani, R. I., & Cahyanti, F. L. D. (2022). Komparasi Pemilihan Platform Belanja Online Dengan Menggunakan Metode Simple Additive Weighting (SAW) Dan Profile Matching. *Bianglala Informatika*, 10(2), 96-103.
- Nurinadi, H., Octariadi, B. C., & Siregar, A. C. (2022). Penerapan Metode Simple Additive Weighting (SAW) dan Weighted Produck (WP) Dalam Sistem Pendukung Keputusan Pemilihan Smartphone Berbasis Website. *Digital Intelligence*, 2(2), 109-121.
- Burhanudin, M., Laksmana, S. P., Rauf, D. I., Wicaksono, D., & Rosyani, P. (2023). Perbandingan Metode SAW, WP dan TOPSIS dalam Sistem Penunjang Keputusan Pemilihan Smartphone Android Bekas. *OKTAL: Jurnal Ilmu Komputer dan Sains*, 2(09), 2445-2452.
- Fatahillah, A., & Pratama, M. R. (2020). Perbandingan Akurasi Metode TOPSIS dan Metode Weight Product untuk Menentukan Siswa Berprestasi. BIOS: Jurnal Teknologi Informasi Dan Rekayasa Komputer, 1(2), 70-79.

Dela Karmeylia Putri

ORIGINA	LITY REPORT			
SIMILA	8% RITY INDEX	18% INTERNET SOURCES	% PUBLICATIONS	% STUDENT PAPERS
PRIMARY	SOURCES			
1	reposito	ory.unpkediri.ac.	id	2%
2	journal.ı Internet Sour	mediapublikasi.i	d	1 %
3	jurnal.po	ortalpublikasi.id		1 %
4	reposito	ory.unmuhpnk.a	c.id	1 %
5	reposito	ori.uin-alauddin.o	ac.id	1 %
6	id.123do			1 %
7	jonedu.c	_		1 %
8	WWW.jol	urnal.mediapub	likasi.id	1 %
9	jurusan. Internet Sour	tik.pnj.ac.id		1%

10	jurnal.umt.ac.id Internet Source	<1%
11	ejournal.bsi.ac.id Internet Source	<1%
12	journal.formosapublisher.org Internet Source	<1%
13	repository.upnjatim.ac.id Internet Source	<1%
14	repository.ub.ac.id Internet Source	<1%
15	repository.its.ac.id Internet Source	<1%
16	ejournal.uniska-kediri.ac.id Internet Source	<1%
17	subset.id Internet Source	<1%
18	begawe.unram.ac.id Internet Source	<1%
19	media.neliti.com Internet Source	<1%
20	docplayer.info Internet Source	<1%
21	id.berita.yahoo.com Internet Source	<1%

22	ojs.trigunadharma.ac.id Internet Source	<1%
23	eprints.umsida.ac.id Internet Source	<1%
24	repository.uir.ac.id Internet Source	<1%
25	jurnal.untan.ac.id Internet Source	<1%
26	etheses.uin-malang.ac.id Internet Source	<1%
27	doku.pub Internet Source	<1%
28	ojs.atmajaya.ac.id Internet Source	<1%
29	repositori.usu.ac.id Internet Source	<1%
30	en.wikipedia.org Internet Source	<1%
31	openlibrarypublications.telkomuniversity.ac.id	<1%
32	repository.uin-suska.ac.id Internet Source	<1%
33	text-id.123dok.com Internet Source	<1%

34	123dok.com Internet Source	<1%
35	e-journals.unmul.ac.id Internet Source	<1%
36	eprints.akakom.ac.id Internet Source	<1%
37	repository.usd.ac.id Internet Source	<1%
38	generic.ilkom.unsri.ac.id Internet Source	<1%
39	repo.palcomtech.ac.id Internet Source	<1%
40	jurnal.kaputama.ac.id Internet Source	<1%
41	pt.scribd.com Internet Source	<1%
42	doaj.org Internet Source	<1%
43	eprints.ums.ac.id Internet Source	<1%
44	proceeding.unpkediri.ac.id Internet Source	<1%
45	www.coursehero.com Internet Source	<1%

46	www.jim.unindra.ac.id Internet Source	<1%
47	ejurnal.stmik-budidarma.ac.id Internet Source	<1%
48	journal.uad.ac.id Internet Source	<1%
49	www.scilit.net Internet Source	<1%
50	jurnal.uisu.ac.id Internet Source	<1%
51	jurnalinformatika.petra.ac.id Internet Source	<1%
52	pt.slideshare.net Internet Source	<1%
53	repository.radenintan.ac.id Internet Source	<1%
54	eprints.stta.ac.id Internet Source	<1%
55	eprints.umg.ac.id Internet Source	<1%
56	idoc.tips Internet Source	<1%
57	issuu.com Internet Source	<1%

58	jateng.tribunnews.com Internet Source	<1%
59	jutif.if.unsoed.ac.id Internet Source	<1%
60	ojs3.lppm-uis.org Internet Source	<1%
61	repository.uncp.ac.id Internet Source	<1%
62	repository.usu.ac.id Internet Source	<1%
63	jurnal.dcc.ac.id Internet Source	<1%
64	ru.wikipedia.org Internet Source	<1%

Exclude quotes Off
Exclude bibliography Off

Exclude matches

Off

UNIVERSITAS NUSANTARA PGRI KEDIRI

FAKULTAS TEKNIK DAN ILMU KOMPUTER

Program Studi : Teknik Mesin, Teknik Elektronika, Teknik Industri, Teknik Informatika, Sistem Informasi

Alamat : Kampus II, Mojoroto Gang I No. 6 Kediri 64112 Website: www.ft.unpkediri.ac.id E-mail: ft@unpkediri.ac.id

SURAT KETERANGAN BEBAS PLAGIASI

Nomor: 0493/FTIK-UN PGRI Kd/C/VII/2024

Gugus Penjamin Mutu Fakultas Teknik dan Ilmu Komputer Universitas Nusantara PGRI Kediri menyatakan bahwa Skripsi/Tugas Akhir:

Nama

: Dela Karmeylia Putri

NPM

: 2013020193

Judul

: PERBANDINGAN METODE SIMPLE ADDITIVE WEIGHTING

DAN PROFILE MATCHING PADA SISTEM REKOMENDASI

SMARTPHONE

Program Studi

: Teknik Informatika

Fakultas

: Fakultas Teknik Ilmu dan Ilmu Komputer

telah dideteksi tingkat plagiasinya dengan kriteria toleransi <= 30% dan dinyatakan bebas dari plagiasi (Rincian hasil plagiasi terlampir)

Demikian surat ini dibuat untuk digunakan sebagaimana mestinya.

0 Juli 2024

iono, M.Si. N: 0007076801

Dr. Risky Aswi Ramadhani, M.Kom. NIDN: 0708049001